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1
Introduction

Semiconductor are material whose electron properties are intermediate between
those of metal and insulators. These characteristics are determined by the structure
of the crystal, bonding characteristic, electronic energy bands, and also by the fact
that unlike metals, a semiconductor has both the positive(hole) and the negative
(electron) carriers of electricity whose density can be controlled by doping the
pure semiconductor with chemical impurities during the crystal growth. To classify
the solid by their electrical properties, it should be understood that there are three
types of materials, metal, semiconductor and insulator.

Figure 1.1: Shows the Band Gap in Semiconductors, Insulators and in Metals.

The group III-V Semiconductor such as Gallium arsenide (GaAs), Silicon Carbide
(SiC) , Silicon(Si), Indium arsenide(InAs), Boron arsenide (BAs), Aluminium
arsenide(AlAs), Gallium nitride (GaN) are very important material in fabrication
of microwaves, optoelectronic and electronic devices [?]. These semiconductors
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2 Introduction

has good basis for technological application such as light emitting diodes, lasers,
integrated circuits, filters, modulators and photo detectors.

Aluminium arsenide having Zinc blend structure which is a binary
semiconductor with an indirect gap[?]. It has wide range application in
optoelectronic, telecommunications, laptops, solar cells, compact disc, therefore
study of these semiconductors is intensively attracted by the researcher[?][?]. In
fabricating heterostructure and tuneable devices in the visible wavelength region
and optoelectronic devices, InAs and AlAs has great significance.

Indium Arsenide(InAs) semiconductor is a direct band Semiconductor and
shows application in high power and high temp electronics also used in diode laser,
in constructing infrared detectors for wavelength range of and formation 1-3.8µm
of quantum dots in monolayer[?].

wide gap semiconductors such as Gallium nitride (GaN), Aluminium nitride
(AlN) and Boron nitride (BN) are actively investigated in view of their promising
potential for short wavelength electroluminiscence devices and high temperature,
high power, high frequency electronics. These semiconductors are mostly used
in micro and optoelectronics therefore they recieved considerably attention from
both theoretically and experimentally[?].

Cadmium selenide (CdSe), Cadmium sulphidde(CdS), Cadmium telluride
(CdTe) are also important material in optoelectronic devices. These have been
several experimental and theoretical studies in this material. Ab initio calculations
based on norm conserving pseudopotential and density functional using using local
density approximation have been perform to determine its elastic, electronic, and
dynamical properties[?]. Diamond has high hardness and bulk modulus and it is
widely used in the mold abrasive and machinery industry. it is the most important
part of optical performance due to its excellent optical performance. Silicon (Si)
is main semiconducting material and Germanium (Ge) semiconductor has high
carrier mobility. It is also used in infrared optical properties, the solar cells, the
transistor, thermoelectric material, radiation detector etc

The aim of this work is to prospect the electronic energy band from the
band structure of Zinc blende type such as Zinc sulphide (ZnS), Zinc selenide
(ZnSe), Zinc telluride (ZnTe), Cadmium selenide (CdSe), Cadmium sulphidde
(CdS), Cadmium telluride (CdTe), Gallium arsenide (GaAs), Gallium antimonide
(GaSb), Gallium phospide (GaP), Gallium nitride (GaN), Silicon Carbide (SiC)
, Indium arsenide(InAs), Indium phosphide (InP), Silicon(Si), Boron arsenide
(BAs), Aluminium arsenide (AlAs), Aluminium phosphide (AlP), Aluminium
arsenide (AlAs), Boron Nitride (BN), Boron phosphide (BP), diamond (C), Tin (Sn),
Germanium (Ge), Silicon (Si). These covalent solids are studied using NWchem
plane wave (NWPW) module which uses pseudopotential and plane wave basis
set to perform density functional theory calculation. NWPW is a module which
basically used to perform band task where in a band structure code is used for
calculating crystal and surface with small band gaps e.g semiconductors and metals.
In this study we use pbe96 and Bhlyp functional of local density approximation for
determining band structure of solids.



2
Theoretical methods

Computational chemistry is also called as molecular modelling and it is the study
of chemical problems using computer as a tool. Computational chemistry deals
with

1. Molecular geometry: In molecular geometry it studies the shape of the
molecule i.e. band length, bond angles and dihedral.

2. Chemical reactivity: In this we determine nucleuophillic site or the
electrophillic site in the particular reaction.

3. IR, UV and NMR spectra.
4. The interaction of a substrate with an enzyme. This study used in drug

designing.
5.The physical properties of the substance It determine the different properties

of the molecule like its melting point, strength, fores of interaction etc.
The tools of computational chemistry are:
Molecular mechanics(MM) which is based on the no. of atoms held together

by a bond by knowing the bond length and the angle between them, the energy it
takes to bend and stretch the given atom can be calculated thereby he energy of
no. of atoms and bond of a given molecule can be easily studied. Upon geometry
optimization we determine its lowest energy and which calculates the geometry of
the molecule. This study is useful for the larger molecule for e.g steroid.

Ab initio calculates are based on the Schrödinger equation which depend
the electron behavior in the molecule. In this method the solution of the
Schrödinger equation for the molecule gives molecule’s energy and wavefunction.
The wavefunction is being mathematical function that can be used to calculate the
electron distribution. Electron distribution determines polarity of the molecule,
which part of it likely to be attacked by the nucleophiles or electrophiles. Since
Schrödinger equation cannot solve for the molecule with more than one electron.
Since considering this approximation, the lesser the serious these are, the better is
the Ab initio calculations. Ab initio calculations are reasonably slow; smaller the
molecules faster will the completion but it takes relatively more time for the larger
molecule.

Semiempirical Calculation(SE) are similar to Ab initio calculations that also
depends on Schrödinger equation. In this method very complicated integral are
not evaluated instead the program draws on a kind of library integrals that was
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4 Theoretical methods

compile by finding the best fit of calculated entity. Thus introducing of experimental
valves into a mathematical procedure to get the best calculated Value is called
parameterization. Theory based on the mixing of experiment and theory that
makes the method semiemperical. Semiemperical calculations are slower that
Molecular mechnics(MM) but faster than Ab initio method.

Density functionals calculations, Similar to Ab initio calculations and
Semiemperical calculations that depends on the Schrodinger equation. DFT does
not calculate a wavefunction but rather it derives electron density. A functional
is a mathematical property related to function. This method are faster than Ab
inition but slower than semiemperical Calculations[?].

1 Molecular mechanics(MM)

Molecular mechanics is based on mathematical model of a molecule as a collection
of the atoms held together by bonds. within the frame work of this model,
the energy of the molecule changes with geometry because the bond resist being
stretched or bent away from some natural length or angle and the atoms resist being
pushed too closely together. Molecular molecules model clearly ignores electron.
The principle behind MM is to express the energy of molecule as a funtion of its
resistance towards bond stretching, bond bending and atom crowding,and to use
this energy equation to find the bond length, angles and dihedral corresponding to
the minimum energy Geometry or more precisely to the various possible potential
energy surface minima. Developing a forcefield The potential energy of a molecule
can be written.

E = ∑
bends

Estrech + ∑
angles

Ebend + ∑
dihedral

Etorsion + ∑
pairs

Enonbond (2.1.1)

Where,
Estrech are energy contribution from bond stretchinglewars2003computational.
Ebend are energy contribution from angel bending.
Etorsion are energy contribution from torsional motion around single bond

torsion.
Enonbonds are energy contribution from interaction between atoms or group

which are non bonded.
The sums are over all the bonds, all the angles defined by three atoms. A-B-

C, all the dihedral angles. angles defined by four atoms A-B-C-D and all pairs
of significants non bonded interactions. The mathematical form of these terms
and the parameters in them constitute term. The increase in the energy of a
spring when it is stretched. Examples of molecules mechanics. If we consider the
application of Molecular Mechanics from the view point of the goals of those who
use it, then the main application have been,

1. To calculate the Geometries (and perhaps energies) of small to medium
sized (i.e. no polymeric) molecules, very often in order to a reasonable starting
Geometry for another type (eg ab initio) of calculation.
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2. To calculate the Geometries and energies of polymers(mainly proteins and
nucleic acid)

3. To calculate the geometries and energies of transition stats as an aid to
organic Synthesis.

4. To generate the potential energy function under which molecules molecules
move far molecular dynamics calculation.

VrN = ∑
bonds

kb(l − lo)2 + ∑
angle

ka(θ − θo)
2 + ∑

torsion
∑
n

1
2

Vn

[
1 + (nω− γ)

]
+

+
N−1

∑
j=1

N

∑
i=j+1

fij

{
εij

[(
roij

rij

)12

− 2
(

roij

rij

)6]}
+

qiqj

4πεorij
(2.1.2)

Equation(2.1.2) defines the force field potential energy of system the force as the
derivative of this potential relative to position. The meaning of the right side is
1st term - is the energy between covalently bonded atoms. this length, it becomes
increasingly poor as atoms separate. 2nd term- is energy due to geometry of
electron orbitals involved in covalent bonding. 3rd term- it represents the energy
for twisting a bond due to bond order and neighbouring bond or lone pair of
electrons.

One bond have move then one of these terms such that total torsional is
expressed as a fouriers series. 4th term- is the non bonded energy between all
atoms pairs which can be decomposed into van der waals and electrostatic energy.
van der waals energy is calculated using the equilibrium distance roij and well
depth. The factor of 2roij the energy is sometimes given in terms of r where

roij = 2
1
σ σ the electrostatics energy uses hear assume that charged due to proton

and electron in an atom can be represented by a single point charge. Molecular
Mechanics is computational methods that computes potential energies surface for
particular arrangement of atom using potential function that are derived using
classical physics. Molecular Mechanics energy expression consist of a simple
algebraic equation for energy of compound it does not use wave function or total
electron density. A set of equation with their associated constant is called force
field. The constant in this equation are obtained from spectroscopic data or ab
initio calculation.

The fundamental assumption of the molecular mechanics is the transfer ability
of parameter. This gives a very simple calculations that can be applied to very large
molecular systems. The performance of the technique is dependent on four factor.

1.The functional form the energy expression.
2.The data used to parameterize the constant.
3.The technique used to optimized the constant from the data.
4.The ability of the users to apply the technique in a way consistent limits

strengths and weaknesses.
In order for the transfer ability of parameters to be a good description of the

molecule, force field uses atom type. This means that a sp3 carbon will be described
by different parameters than a sp2 atom. Some force fields even parameterized
atom for specific functional groups.
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For eg: The carbonyl oxygen in a carboxylic acid may be described by different
parameters than the carbonyl in ketone. The energy expression consist of the
sum of simple classical equation. These equation describe various aspect of the
molecule such as bond stretching, bond bending, torsion electrostatic interaction,
van der waals forces and hydrogen bonding. force field differ in the number of
terms in energy expression. the complicity of those term and the way in which
the constant were obtained since electron are not explicitly included electronic
processes cannot be modeled. Terms in the energy expression that described a
single aspect of the molecular shape such as bond stretching, angle bending, ring
inversion or torsional motion are called balanced term. All force field have atleast
one valence term and most have 3 or more. Terms in the energy expression that
describes how one motion of the molecule affects another are called cross terms. A
cross term commonly used is a stretch bond term, which describe how equilibrium
bond lenghth tend to shift and bond angles are change. Some force fields have
no cross term and may compensate for this by having sophisticated electrostatic
function[?].

Some of the commonly used forcefield in molecular mechanics are AMBER,
CHARMM, CFF, CHEAT, DREIDING, ECEPP, EFF, GROMOS, MM1, MM2, MM3,
MM4, MMFF, MOMEC, OPLS, Tripos, UFF, YETI and so on.

AMBER is an assisted model building with energy refinement and was
parameterized specifically for proteins and nucleic acid. It uses only five bonding
and anti-bonding term with sophisticated electrostatic treatment[?].

CHARMM is an chemistry at Harvard macromolecule mechanics is the name
for both a forcefield and program incorporating that forcefield. It was originally
devised for proteins and nucleic acid. It is applied to wide range of application like
biomolecules, molecular dynamics, solvation, crystal packing vibrational analysis
and also QM/MM studies. It uses five valence terms, on of which is an electrostatic
term[?].

CFF is the consistent force field which developed to yield consistent accuracy
of results for conformations, strain energy, vibrational spectra and vibrational
enthalpy of proteins[?].

CHEAT is carbohydrate hydroxyl represent by external atoms devised specially
for modeling carbohydrates[?].

DREIDING is devised for organic or bio-organic molecule forcefield used
for large biomolecular system. It uses five valence terms, one of which is an
electrostatic term[?].

UFF stands for Universal forcefield widely used for system containing inorganic
elements. It uses four valence term but not an electrostatic term[?].

MM1, MM2, MM3, MM4 are general purpose organic force fields. MM3
method is one of the most accurate modelling hyddrocarbon, These forcefields
use five to six valence terms, one of which is an electrostatic term and one to nine
cross term[?].

OPLS stands for optimized potential for lquid simulation was developed for
modeling bulk liquids[?].



2 Hartree fock theory 7

2 Hartree fock theory

The many-electron system is very complex andnit requires elaborate computational
methods. Conceptually and computational simplification can be obtained by
introducing independent-particle models, where the motion of one electron
is considered to be independent of the dynamics of all other electrons. An
independent-particle model means that the interactions between the particles
is approximated, either by neglecting all but the most important one or by taking
all interactions into account in an average fashion. Within electronic structure
theory, only the latter has an acceptable accuracy, and is called Hartree–Fock (HF)
theory. In the HF model, each electron is described by an orbital and the total wave
function is given as a product of orbitals. Electrons are indistinguishable fermions
and its overall wave function must be antisymmetric, which is conveniently
achieved by arranging the orbitals in a Slater determinant. The best set of
orbitals is determined by the variational principle, that is the HF orbitals give
the lowest energy within the restriction of the wave function being a single Slater
determinant. The shape of a given molecular orbital describes the probability of
finding an electron, where the attraction to all the nuclei and the average repulsion
to all the other electrons are included. Since the other electrons are described
by their respective orbitals, the HF equations depend on their own solutions, and
must therefore be solved iteratively. The molecular orbitals then expanded in a
basis set of which resulting equations are written as a matrix eigenvalue problem.
The elements in the Fock matrix correspond to integrals of one and two electron
operators over basis functions, multiplied by density matrix elements. The HF
equations in a basis set obtained by repeated diagonalizations of a Fock matrix.
The HF model is considered to be a branching point where either additional
approximations can be invoked resulting to semi-empirical methods, or by adding
additional determinants it can be improved to generate models that can be made
to converge towards the exact solution of the electronic Schrödinger equation.
Semi-empirical are the methods which derived from the HF model by neglecting
all integrals involving more than two nuclei in the construction of the Fock matrix.
HF model limited accuracy therefore such approximations will lead to a poor
model. Semi-empirical methods relies on turning the remaining integrals into
parameters and fitting these to experimental data, especially molecular energies
and geometries. Such methods are computationally much more efficient than the
ab initio HF method, but are limited to systems for which parameters exist. HF
theory gives average electron–electron interactions but neglects the correlation
between electrons. Methods that include electron correlation require a multi
determinant wave function, since HF is the best single-determinant wave function.
Multideterminant methods are computationally much more involved than the HF
model, but can generate results that systematically approach the exact solution of
the Schrödinger equation. Density Functional Theory (DFT) in the Kohn–Sham
version can be considered as an improvement on HF theory, where the many-body
effect of electron correlation is modeled by a function of the electron density. DFT
is, analogously to HF, an independent-particle model and is comparable to HF
computationally, but provides significantly better results. The main disadvantage
of DFT is that there is no systematic approach to improving the results towards the
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exact solution[?].

3 Basis set

Basis set is one of the approximation introduced in all ab initio method. Unknown
function, such as a molecular orbital (MO), in a set of known functions is not an
approximation if the basis set is complete. Complete basis set means that an infinite
number of functions must be used, which is impossible in actual calculations. An
unknown MO can be thought of as a function in the infinite coordinate system
spanned by the complete basis set. When a finite basis set is used, only the
components of the MO along those coordinate axes corresponding to the selected
basis functions can be represented. The smaller the basis set, the poorer the
representation. The type of basis functions used also influence the accuracy. The
better a single basis function is able to reproduce the unknown function, the fewer
basis functions are necessary for achieving a given level of accuracy. Knowing
that the computational effort of ab initio scales formally as at least M4

basis it is of
course of prime importance to make the basis set as small as possible, without
compromising the accuracy. The expansion of the molecular orbitals leads to
integrals of quantum mechanical operators over basis functions, and the ease
by which these integrals can be calculated also depends on the type of basis
function. In some cases the accuracy-per-function criterion produces a different
optimum function type than the efficiency-per-function criterion. basis function
is a specific type of mathematical function, while a basis set is a collection of
basis functions containing a specific set of parameters. The basis set desiderate
can be listed as follows: 1. The basis functions should reflect the nature of the
problem to obtain good accuracy by a relatively small number of functions. 2.
The basis functions should be able to generate a complete basis set, such that a
well-defined basis set limit can be obtained. 3. Basis sets should be available in
several hierachical levels, where each level provides a well-defined accuracy and
the hierachy systematically converges the result towards the basis set limit. Ideally
the basis set convergence should be monotomic and fast. 4. For a given accuracy,
the basis set should be as computationally efficient as possible, that is delivering
the target accuracy for as low a computational cost as possible. The computa-
tional cost is often related to the number of basis functions, but other factors may
also be important. 5. Basis sets should ideally be universal, that is suitable for
different methods (HF, DFT, electron correlation methods, relativistic methods)
and different properties (energy, molecular structure, vibrational frequencies,
polarizabilities, NMR spin–spin coupling constants, etc.). 6. Be available for all
atoms, or at least for a large fraction of the periodic table.

4 Quantum mechanics(QM)

Quantum Mechanics(QM) is the methamethical description of the behaviour of
electron and thus of chemistry. in theory, QM can predict any property of an
individual atom or a molecule exactly. In practice, the QM equations have only
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been solved exactly for one electron systems. The QM were devised by Schrödinger
and Heisenberg.

The Schrödinger equation is

Ĥψ = Eψ (2.4.3)

where, Ĥis the Hamiltonian operator, ψ is a wave function, E is the energy. an
equation of this form is called an Eigen function. psi is called the Eigen function
and E is Eigen value. The wave function ψ is a function of the electron and
nuclear position and it can be described the probability of electron being in certain
location, but it cannot predict exactly where the electrons are located. The wave
function is also called a probability amplitude because it is a square of the wave
function that yields probabilities in order to obtain a physical relevant solution
of the Schrödinger equation, the wave function must be continuous, single value,
normalisable and antisymmetric with respect to the interchange of electron[?].
The Hamiltonian operator Ĥ is

Ĥ = −
particles

∑
i

∇2
i

2mi
+

particles

∑
i<j

∑
qiqj

rij
(2.4.4)

∇2
i =

∂2

∂x2
i
+

∂2

∂y2
i
+

∂2

∂z2
i

(2.4.5)

Where, ∇2
i is the laplacian operator acting on particle i.

mi is mass of the particle i.
qi is charge of the particle i.
rij is the distance between particle.
First term gives the Kinetic Energy of the particle within a wave function.
Second term is the energy due to coloumbic attraction or repulsion of particles.
this equation is time dependent.
Born Oppenheimer Approximation is given by

Ĥ = −
electrons

∑
i

∇2
i

a
−

nuclei

∑
i

electrons

∑
j

zi

rij
+

electrons

∑
i<j

∑
1
rij

(2.4.6)

First term is Kinetic energy of the electrons only.
Second term is the attraction of electrons to nuclei.
Third term is the repulsion between electrons. Various computational methods

have strength and weaknesses. Quantum mechanics computes many properties
and model chemical reactions whereas molecular mechanics is able to compute
very large compound very quickly. It is possible to combine these two methods
into one calculation which models a very large compounds using Molecular
mechanics and crucial section of the molecule using Quantum mechanics thus
these calculation give results faster when only one region needed to be modeled
quantum mechanically. It can also be used to model a molecule surrounded by
solvent molecules. This type of calculation is called QM/MM calculaion[?].
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5 Density Functional Theory

Density Functional Theory (DFT) is the method where the energy of the
molecule can be determined from the Electron density. In this formulation,
the electron density is expressed as a Linear combination of basis functions
similar in mathematical form to HF orbitals. A determinant is then formed from
these functions, called kahn-sham orbitals. It is the electron density from this
determinant of orbitals that is used to compute energy. Kahn-sham orbitals describe
the behaviour of electron in molecule. A density functional is then used to obtain
the Energy for the electron density. A functional is a function of function, in this
case, the electron density. The exact density functionals is not known some of
these functionals were developed from fundamental quantum mechanics and some
were developed by parameterizing functions. DFT tend to classified either as an ab
initio and semi empirical method or in a class by itself. The advantage of using
electron density is that the integral for coloumbic repulsion need be done only over
the electron density, which is three dimensional function. At least same electron
correlation can be included in the calculation.This results in faster calculation than
HF Calculations and computations that are more accurate as well. The better DFT
functionals give results with an accuracy similar to that of an MP2 Calculation.
Density functionals can be broken down into several classes. The simplest is called
Xα method. This types of calculation include electron exchange but not correlation.
It was introduced by J.C.Slater. The Xα method is similar in accuracy to HF and
sometimes even better. LDA is known to give less accurate geometries and predict
binding energies significantly too large. The simples approximation is based on
electron density, called a local density approximation (LDA), for high spin system,
this is called the local spin density approximation (LSDA). LDA calculation have
been widely for band structure calculation. Their performance is less impressive
for molecule calculation. A more complex set of functionals utilizes the Electron
density and its gradient. These are called gradient corrected methods. There are
also hybrid methods that combine functionals from other methods with Hartree-
fock calculation, usually the exchange integrals. In general, grandient corrected
or hybrid calculation give the most accurate results. Recent development in DFT
Is the advent of linear scaling algortihm. These algorithms replace the coloumbic
terms for distant regions if the molecule with multiple of Expansions This results
in a method with a time complexity of N for sufficiently large molecules. The
most common scaling techniques are the fast multiplot method (FMM) and the
continuous ast multiplot method(CFMM). DFT is generally faster than Hartree-fock
for system with more than 10-15 non hydrogen atoms, depending on the numeric
integral accuracy and basis set. The linear scaling DFT Method can be fastest ab
initio method for large molecules.

6 Band theory

Band structure is one of the most important concepts in solid state physics. It
provides the electronic levels in crystal structures, which are characterized by two
quantum numbers, the Bloch vector k and the band index n. Bloch vector is an
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element of the reciprocal space (in units 1/length)) and the energy of the electron
En(k)he other electrons, which are considered to provide a fixed background
(called mean-field). This entirely neglects correlations between the kinetics of
the single electron and the others, and thus only serves as an approximation
for the complex many-particle physics scenario. However, this is rather good
for many purposes, in particular if more complicated potentials are used as
justified within density functional theory. The formation of energy bands in
semiconductors and by extension insulators can be explained in an analogous
manner to metals. The difference being that in semiconductors (insulators) there
is an energy gap between the filled valence band and the empty conduction band.
Band formation in semiconductors. energy band formation in Si semiconductor
Si has an atomic number of 14 and the electronic configuration is 1s22s22p63s23p2

shown in below diagram.

Figure 2.1: Electronic configuration of Si atom. The 3s and 3p together forms the outer
shell while the others form the inner shells

The 3s23p2 forms the outer shell,the inner shells 1s22s22p6 are not considered
for electrical conductivity. The 3s and 3p orbitals in Si are having considerably
same energy and can hybridize to form sp3 orbitals. Given that there are 4 electrons
a total of 4 sp3 hybrid orbtials are formed. These form 4 bonds that are directed
along the corners of a tetrahedron, as shown in figure below.
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Figure 2.2: (a) Isolated Si atoms showing the outer shell orbitals. (b) In a solid, these
orbitals hybridize to form 4 sp 3 orbitals, just before bonding.

Hybridization is a common property of elements of Group IV of the periodic
table to which Si belongs to. C which is in top of the group can form a variety of
hybrid orbitals (sp3, sp2, sp). Both Si and the element below it, Ge, can form sp3

hybrid orbitals. Sn and Pb (below Ge) are metals with low melting points. In the
case of Si, the hybrid orbitals interact the same way that atomic orbitals interact
in metals. Consider a bond formed between 2 sp3 hybrid orbitals (1 from each Si
atom). The two orbitals can interact to form a bonding () and anti-bonding ( ∗ )
orbital. Since each Si atom will contribute one electron to the bond there will be a
total of 2 electrons which will both go to the bonding orbital. Thus, each Si atom
can form a bond with 4 other Si atoms and in all cases the bonding orbital () will
be full. A solid will be formed from a large number of these orbitals. When the
bonding orbitals interact they will form an energy band, called valence band. This
valence band will be completely full since the bonding orbital is full. Similarly, the
anti-bonding orbitals can interact to form an energy band, called conduction band.
This will be completely empty. Unlike metals, the valence and conduction band in
a semiconductor is separated by a forbidden energy gap, this is called band gap.
The formation of bands in Si crystal is given below figure
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Figure 2.3: Formation of energy bands in Si. (a) Si atom with 4 electrons in outer shell
form (b) 4 sp 3 hybrid orbitals. (c) The hybrid orbitals form and ∗ orbitals. (d) These
orbitals overlap in a solid to form the valence and conduction band

Si has band gap (Eg) value of 1.11 eV at room temperature (300 K). The
formation of a band gap (filled valence band and empty conduction band with a
forbidden energy gap) can be extended to other semiconductors and insulators.

6.1 A simple one-dimensional example

electron in the potential is given by

V(x) = 2Ucos(gx) = U(eigx + e−igx) (2.6.7)

where,g = 2π
d

As V(x+d)=V(x) for all x the potential exhibits the period d and can be thought
as the potential resulting from a lattice of ions. by solving Schrödinger equation

Ĥψ = Eψ (2.6.8)

with the Hamilton operator

Ĥ = − h̄2

2m
∂2

∂x2 + V(x) (2.6.9)

To normalize wave functions, we consider a finite crystal with N periods and use
periodic boundary conditions ψ(x + Nd) = ψ(x). Then the wave function can be
expanded in a discrete Fourier series

ψx = ∑
q

aqeiqx (2.6.10)

where , q is an integer multiple of 2π/Nd. At a later stage we allow N to become
arbitrarily large, so that the artificial periodicity does not matter and the spacing
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of q values becomes infinitesimal small. Inserting into the Schrödinger equation

∑
q

(
h̄2q

′2

2m
eiq
′
x + Uei(q

′
+g)x + Uei(q

′−g)x
)

aq′ = E ∑
q′

eiq
′
xaq′ (2.6.11)

Multiplying both sides with eiqx/Nd and performing the integral
∫ Nd/2
−Nd/2 dx

Resulting equation is

h̄2q2

2m
aq + Uaq−g + Uaq+g = E ∑

q′
eiq
′
xaq′ (2.6.12)

This shows that Fourier components with different q couple to each other if
their difference matches g. This class can be uniquely described to be all the values
q which can be written as q = k + lg(k) with l ∈ Z, where k is a fixed value in the
interval −π/d < k ≤ π/d. Setting ak+lg = a(k)l we find for each k an infinite set
of equations

h̄2(k + lg)2

2m
a(k)l + Uaq−g + Uaq+g = E ∑

q′
eiq
′
xaq′ (2.6.13)

[?]
for l = . . . , −2, −1, 0, 1, 2, . . .

6.2 Bloch functions

The Schrödinger Equation is given by

∇2ψ(r) +
2mo

h̄2 [E−V(r)]ψ(r) = 0 (2.6.14)

where, r is position, ψ is the Bloch wave, u is a periodic function with the same
periodicity as the crystal, the wave vector k is the crystal momentum vector, e is
Euler’s number

writing
uk(r) = e−ik.rψk(r) (2.6.15)

we have,

uk(r + Ri) = exp[−ik(r + Ri]ψk(r + Ri) = e−ik.rψk(r) = uk(r) (2.6.16)

that is uk(r) has the periodicity of the lattice.

ψk(r) = uk(r)eik.r (2.6.17)

The one-electron wave functions is perfect crystals are the product of a plane
wave by a function which has the periodicity of the lattice. Such a wave function
is called a Bloch function.
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Bloch functions are generally normalised in a unit cell of the crystal, or they
may be normalised in unit volume, or in the parallelepiped used for the periodic
boundary conditions. In this parallelepiped the Bloch functions form an orthogonal
system.

It can be proved that the Coulomb and exchange integrals computed with Bloch
functions have the correct periodicity. Hence the use of the Bloch theorem as a
boundary conditions is self-consistent.

The vector k plays the role of a set of three quantum numbers.

ψk(r) = eik.r (2.6.18)

with E(k) = h̄2k2/2m.h̄k is in this case just the momentum of the electron. It
is not however an eigenvalue of the operator-ih̄∇ and is not equal to the average
value of the momentum of the electron in state k. We have seen that k is a constant
of the motion, that is the electron in state k is not scattered at all into other states
by a perfect lattice. It is clear that E is a function of k and may be considered as a
continuous function, though for some values of k it may not be differentiable, and
a particular dispersion relation E(k) characterises each band.

Detailed knowledge of the band structure is becoming more and more essential
in the design of semiconductor devices, such as a tunned diodes, Gunn oscillators,
injection lasers, infrared detectors and other devices which depend on peculiar
characteristics of the energy bands for their operation.

This is in contrast to the development of the transistor which required only the
general concepts of the theory.

If now (1.1.1) is substituted into (1.1.4), the equation satisfied by uk(r)is
obtained.

∇2uk + 2ik.∇uk − k2uk +
2mo

h̄2 [E(k)−V(r)]uk = 0 (2.6.19)

If we wish to write above equation as a eigenvalue equation, we introduce a
k-dependent energy operator H(k)operating on uk(r)

H(k)uk(r) = [− h̄2

2mo
(∇+ ik)2 + V(r)]uk(r) = E(k)uk(r) (2.6.20)

and we note for future reference that

gradkHk = −
ih̄2

mo
(∇+ ik) (2.6.21)

Since−ih̄∇ is the operator p, we can write

∇2uk −
2
h̄

k.puk +
2mo

h̄2 [E(k)− h̄2k2

2mo
−V(r)]uk = 0 (2.6.22)

This equation is used to calculate corresponding to a certain k when E and u are
known as a nearby ; the term containing k.p is treated as a perturbation (k.p
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approximation) If in () we change k in −k, we have

∇2u−k − 2ik.∇u−k − k2u−k +
2mo

h̄2 [E(−k)−V(r)]u−k = 0 (2.6.23)

By comparing above equation with the complex conjugate of () we see that E must
be an even function k and uk mus be a multiple of u∗k

E(−k) = E(k) (2.6.24)

uk(r) = Cuk
∗r (2.6.25)

C being c complex constant of modulus one. This constant can be adjusted to be
one, or any chosen phase factor, by adjusting the arbitrary phase of uk(r) . In a
similar way it can be proved that, provided the crystal has a center of inversion at
the origin,

u∗k(−r) = C
′
ukr (2.6.26)

c
′
having the same properties as C . The symmetry expressed by these relations

does not follow from crystal symmetry. It is known as time reversal symmetry. It
may be considered as a analogue, for electron waves, of the optical principle of
reversibility of the light path.

Bloch Theorem: For ideal crystals with a lattice-periodic Hamiltonian satisfying
h̄(r + R) = h̄(r) for all vectors R of the Bravais lattice, a complete set of eigenstates
can be written in the form ψ

(r)
nk = eikrunk(r) where unk(r+R) = unk(r) is a lattice-

periodic function. The corresponding energies E n (k) are continuous functions
in the Bloch vector k for each band index n and constitute the energy bands. The
Bloch vectors are restricted to the first Brillouin zone and for finite crystals there
are as many different Bloch vectors k in each band as there are primitive unit cells
in the crystal[?].

6.3 Pauli principle and Fermi energy

A real crystal contains not only a single electron but typically several electrons per
unite cell. Many-particle quantum physics states that valid many-particle states can
only be constructed, if one does not allow two electrons to occupy the same single
particle level. Thus the ground state of the many-electron system is obtained by
subsequently filling the lowest energy levels with electrons. The energy of the level
filled with the last electron is called the Fermi energy EF. In order to determine
EF, we need to count the number of k-values, which is easy for a finite crystal.
The first Brillouin zone contains as many k points as there are unit cells in a finite
crystal. In this context the spin degree of freedom has to be taken into account. In
most cases the energy bands are identical for both spin directions . Thus each state
with a given Bloch vector and band index η can accommodate two electrons and
consequently each band can take two electron per primitive unit cell. Extended
crystals do not allow for a macroscopic net charge due to the Coulomb repulsion.
Thus the total number of electrons must match the charges of the nuclei. This rule
provides the Fermi energy for a given crystal.
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Figure 2.4: Brillouin zone for the fcc lattice

The location of the Fermi energy with respect to the band structure is crucial
for the optical and electrical properties of the crystal. If the Fermi energy is located
within one band the solid is a metal. If on the other hand the Fermi energy is located
in a band gap between the uppermost entirely filled band (the valence band) and
the next entirely empty band (the conduction band), the material is either a
semiconductor or an insulator (for larger band gaps), where the differentiation is
however not sharp. Note that the presence of extra charges, such as replacing some
atoms by others with a different nuclear charge (doping) or electric potentials at
interfaces (e.g. field effect transistors) allow for a (slight) manipulation of the total
number of electrons. While the corresponding change in Fermi energy is negligible
for metals, in semiconductors any extra electron occupies the conduction band,
while any missing electron provides an empty state (called hole) in the valence
band. Thus the conductivity of semiconductors can be easily modified, which is
the basis for most electronic applications of these materials.





3
Results and calculation

Cubic and hexagonal semiconduction are the most common structures in which
the binary semiconduction crystallize.from the cubic structures, the zinc-blende
(zb) is the most common.In this project we present such a theoretical comparison
using an an density functional theory using pseudo-potential plane wave function
based on the local density approximation (LDA) for the correlation and exchange
potentials.In NWChem projected DOS are only perform in the pspw code. The
band code only has total DOS. There are differences in how DOS is calculated
in pspw and band. In pspw, the DOS is computed by taking a lorentzian
distribution about each eigenvalue, whereas in band, a tetrahedral integration
over the brillioun zone is used. generalized gradient approximation (GGA) in the
scheme of Perdew-Burke-Ernzerhof (PBE) to describe the exchange-correlation
functional.In this code, the plane wave functions of valence electrons are expanded
in a plane wave basis set, and the use of norm-conserving pseudopotential
allows a planen wave energy cutoff Ec. Only plane waves with kinetic energies
smaller than Ec are used in the expansion. Reciprocal-space integration over
the Brillouin zone is approximated through a careful sampling at finite number
of k-points using a Monkhorst-Pack mesh.. We choose the the Brillouin-zone
sampling mesh parameters for the k-point set are 9×9×9 for the band structure
calculation whereas for the density of state dos-grid is 11×11*11. The lattice
constant for the given zinc blende structure is given in the following table

19
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Name Lattice
constantAo

Name Lattice
constantAo

AlAs 5.662 GaP 5.448
AlP 5.451 GaSb 6.095
AlSb 6.135 GeGe 5.658
AsB 4.777 InAs 6.058
BN 3.616 InP 5.869
BP 4.538 InSb 6.478
CC 3.567 SiC 4.358
CdS 5.818 SiSi 5.431
CdSe 6.077 SnSn 6.46
CdTe 6.481 ZnS 5.406
GaAs 5.653 ZnSe 5.667
GaN 4.52 ZnTe 6.103
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Figure 3.1: The band structure and density of state for Aluminiumarsenide.
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Figure 3.2: The band structure and density of state for Aluminium phosphide
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Figure 3.3: The band structure and density of state for Aluminium Antimonide
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Figure 3.4: The band structure and density of state for Arsenic Boride
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Figure 3.5: The band structure and density of state for Boron Nitride
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Figure 3.6: The band structure and density of state for Boron Phosphide
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Figure 3.7: The band structure and density of state for diamond.
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Figure 3.8: The band structure and density of state for Cadmium Sulphide
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Figure 3.9: The band structure and density of state for Cadmium Selenide
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Figure 3.10: The band structure and density of state for Cadmium telluride.
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Figure 3.11: The band structure and density of state for Gallium arsenide
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Figure 3.12: The band structure and density of state for Gallium nitride
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Figure 3.13: The band structure and density of state for Gallium phosphide
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Figure 3.14: The band structure and density of state for Gallium antimonide
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Figure 3.15: The band structure and density of state for Germanium
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Figure 3.16: The band structure and density of state for Indium arsenide
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Figure 3.17: The band structure and density of state for Indium phoshide
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Figure 3.18: The band structure and density of state for Indium antimonide
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Figure 3.19: The band structure and density of state for Silicon carbide
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Figure 3.20: The band structure and density of state for Silicon
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Figure 3.21: The band structure and density of state for Tin



31

−0.5

 0

 0.5

 1

 1.5

 2

L Γ X W K Γ

k vector

Band structure

−0.5

 0

 0.5

 1

 1.5

 2

 
 
E
n
e
r
g
y
 
(
e
V
)

dos

Density of state

Figure 3.22: The band structure and density of state for Zinc Sulphide
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Figure 3.23: The band structure and density of state for Zinc Selenide



32 Results and calculation

−0.5

 0

 0.5

 1

 1.5

L Γ X W K Γ

k vector

Band structure

−0.5

 0

 0.5

 1

 1.5

 
 
E
n
e
r
g
y
 
(
e
V
)

dos

Density of state

Figure 3.24: The band structure and density of state for Zinc Telluride

Figure 3.25: Enegy gap of various covalent solid using pbe96 functional
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Figure 3.26: Enegy gap of various covalent solid using bhlyp functional
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