Programme: M. Sc. (Zoology) Course Code: ZOO-404 Number of Credits: 2 Effective from AY: 2018-19

Prerequisites for the	Should have studied B. Sc. Zoology with assumption	
course:	that the student has a basic and working knowledge of	
	classical evolutionary biology	
<u>Objective:</u>	This course develops concepts in classical laws of	
	thermodynamics and their application, postulates of	
	statistical mechanics, statistical interpretation of	
	thermodynamics, microcanonical, canonical and grants	
	canonical ensembles; the methods of statistical	
	mechanics are used to develop the statistics for Bose-	
	Einstein, Fermi-Dirac and photon gases.	
<u>Content:</u>	Module 1: Evolutionary theories and evidences: Contributions of Lamarckism, Darwin-Wallace postulates, Overview of evidencesPaleontological, Embryological, - Comparative morphological, Anatomical, Genetics and Cytological, Molecular Biological evidences, limitations of Darwinism, Neo Darwinism Evolutionary forces that affect the allelic frequencies: Mutation, Migration, Selection - Stabilizing selection, Directional selection, disruptive selection, Balancing selection, Frequency dependent selection, Density dependent selection, Group and kin selection, Selection coefficient, Selective value, Selection in natural Populations, Genetic drift, Non- random mating.	12 hours
	Module 2: Concept of species and models of speciation based on distribution-sympatric, allopatric, stasipatric, based on genetic drift-genetic revolution, genetic transilience, Founder-flush theory, hybridization and speciation, phylogenetic gradualism, punctuated equilibrium, chromosomal phylogeny, molecular phylogeny, neutral theory, molecular clock, isolating mechanisms, Creation and evolution models.	12 hours
Pedagogy:	Lectures/ tutorials/assignments/self-study	
<u>References/Readings</u>	 Andrew Ferguson, Biochemical Systematics and Evolution, Blackie Publ., London 2. Douglas J Futuyma, Evolutionary Biology (3rd Edition), Sinauer Associates, New York. Douglas J Futuyma, Evolution, Sinauer associates, New York Mark Ridley, Evolution (3rd edition), Blackwell Publishers, New York. Michael R Rose and Laurence D Mueller, Evolution and Ecology of the Organism, Prentice Hall, New York 	

Learning Outcomes	1. Explain statistical physics and thermodynamics as logical consequences of the postulates of statistical
	mechanics.2. Apply the principles of statistical mechanics to selected problems.
	3. Apply techniques from statistical mechanics to a range of situations.