Programme: M. Sc. (Physics)Course Code: PHSO-313Title of the Course: Physics of Energy MaterialsNumber of Credits: 4Effective from AY: 2018-19

Effective from AY: 20 Drerequisites for the	Basic knowledge of Solid State Physics and thermodynamics	
	Basic knowledge of Sond State Physics and thermodynamics	
<u>course:</u>		
<u>Objective:</u>	1. Is to develop the understanding of different energy materials properties, their synthesis and how to make use of them for energy extraction	
	2. Student should understand the basic principle of different energy extraction phenomenon.	
Content:	1. Materials for Solar Energy applications	4 hours
	Motivations for Solar Energy, Nanostructures and	
	Different Synthesis Techniques, Nanomaterials for Solar	
	Cells Applications, Advanced Nanostructures for	
	Technological Applications, Theory and Future Trends in	
	Solar Cells.	14 hours
	2. Photovoltaic and Photocatalytic Materials	
	Photovoltaics, Metal oxide nanostructures and	
	nanocomposites for photovoltaic applications (TiO_2 and ZnO based DSSC and heterostructure devices),	
	Fabrication of heterostructure devices with doped	
	nanocomposites, Photocatalysis, Metal oxide	
	nanostructures and nanocomposites for photocatalytic	
	application, Future directions.	
	3. Advanced Electronics: Looking beyond Silicon	6 hours
	Limitations of Silicon-Based Technology, Need for	
	Carbon-Based Electronics Technology, Carbon Family,	
	Electronic Structure of Graphene and CNT, Synthesis of	
	CNTs, Carbon Nanotube Devices, Advantages of CNT-	
	Based Devices, Issues with Carbon-Based Electronics.	
	4. Thermoelectric Materials	6 hours
	The Seebeck and Peltier effects, thermoelectric figure of	
	merit, Measuring the thermoelectric properties, Heat	
	conduction by the crystal lattice, Materials for Peltier cooling, Generator materials, Thermoelectric	
	cooling, Generator materials, Thermoelectric refrigerators and generators.	
	5. Magnetocaloric Mateirals	6 hours
	Thermodynamics of Magnetocaloric effect, Methods of	
	investigation of magnetocaloric properties,	
	Magnetocaloric effect in different types of materials,	
	Magnetocaloric effect in nanosized materials, Magnetic	
	refrigeration	
	6. Plasmonic Materials	6 hours
	Electromagnetics of metals, Surface Plasmon polaritons	
	at metal/insulator interfaces, localized surface Plasmon,	
	Applications: Transmission of radiation through	
	apertures and films, Spectroscopy and sensing.	
	7. Fuel Cells	6 hours

		1
	Design principle and operation of fuel cell, Types of fuel	
	cells, conversion efficiency of fuel cell, application of	
	fuel cells. Efficiency of fuel cells, operating	
	characteristics of fuel cells, Advantages and future	
	potential of fuel cells.	
Pedagogy:	lectures/ tutorials/ seminars/ assignments/ presentations/ etc.	
	or a combination of some of these.	
References/Readings	1. Ashutosh Tiwari, Sergiy Valyukh, Advanced Energy Materials, John Wiley and Sons, 2014.	
	2. H Julian Goldsmid, The Physics of Thermoelectric Energy Conversion, Morgan & Claypool Publishers, 2017.	
	3. A.M. Tishin, Y.I. Spichkin, The Magnetocaloric Effect and its Applications, CRC press (Taylor and Francis group), 2016.	
	 Stefan A Maier, Plasmonics: fundamentals and application, Springer, 2007. 	
	 5. Sam Zhang, Organic nanostructured thin film devices and coatings for clean energy, CRC Press (Taylor and Francis group) 2017. 	
	 6. Sam Zhang, Nanostructureed thin films and coatings, CRC Press (Taylor and Francis group), 1ST Edition, 2010. 	
	 R. Saito, G Dresselhaus, M S Dresselhaus, Physical Properties of Carbon Nanotubes, Imperial college Press, 2005. 	
	8. A.S. Bhatia, Nanoscience and carbon nanotubes, Deep and	
	deep publication, 2009. 9. Antonio Dominech Carbo, Electrochemistry of porous	
	materials, CRC Press (Taylor and Francis group) 2010 10. Klimov Vasily, Nano plasmonics, Pan Stanford Publishing, 2014.	
	 11. Ru Eric C.Le, Pablo G. Etchegoin, Principles of surface enhanced raman spectroscopy and related plasmonic effects, Elsevier; 1st Edition, 2009. 	
	12. Tsukerman Igor, Computational methods for nanoscale applications, Springer, 2008.	
	13. John Twidell, Tony Weir, Renewable Energy Sources, Taylor and Francis group, 2nd Edition, 2006.	
	14. G.D Rai, Non-Conventional energy Sources, Khanna Publishers 2003.	
Learning Outcomes:	Student will understand how to synthesis different energy	
	materials (nanomaterials and bulk) and how to make use of	
	them for diverse energy applications	
	Student will understand the basic principle of operation of	
	all energy extraction devices and manipulate it to get better	
	efficiency.	