Programme: M. Sc. (Physics) Course Code: PHSO-312 Title of the Course: Spectroscopic Techniques in Condensed Matter Physics

Effective from AY: 202	21-22	
Prerequisites for the	Should have studied courses in classical mechanics,	
course:	electromagnetism, elementary quantum mechanics and	
	nuclear physics.	
Objective:	To introduce different spectroscopic techniques that can	
	be used for characterization of materials, especially in	
	condensed matter.	
Content:	1. Electronic Spectroscopy	10 hours
	Electromagnetic radiation, Absorption and Emission of	
	radiation, Line width and its broadening mechanisms,	
	One- electron and two-electron atoms: spectrum of	
	hydrogen, helium and alkali atoms; Many electron	
	atoms: Hund's rule, L-S and j-j coupling, Spectroscopic	
	terms, Lande interval rule; Interaction with	
	Electromagnetic fields: Zeeman, Paschen Back and Stark	
	effects, electron spin resonance spectroscopy, Hyperfine	
	structure and isotope shift, selection rules; Lamb shift,	
	Spontaneous and stimulated emissions, Einstein	
	coefficients, Introduction to lasers and laser spectroscopy	
	2. Molecular Spectroscopy	14 hours
	Microwave spectroscopy, Infrared spectroscopy, the	
	vibrating diatomic molecule – simple harmonic	
	oscillator, the anharmonic oscillator, the diatomic	
	vibrating rotator, Interaction of rotation and vibrations,	
	the vibrations of polyatomic molecules, Raman	
	spectroscopy– Electronic spectra of diatomic molecules	
	– Born-Oppenheimer approximation, vibrational coarse	
	structure – progressions. Intensity of vibrational	
	transitions – the Franck-Condon principle. Optical	
	absorption: Free carrier absorption-optical transition	
	between bands-direct, and indirect-excitons,	
	Luminescence in crystal - excitation and emission -	
	decay mechanism, Fluorescence, Phosphorescence,	
	Crystal Field Theory, Spectroscopy of transition metals	
	complexes.	
	3. X-rays: Sources and Interaction with matter	12 hours
	X-rays: Wayes and photons, Scattering,	
	Absorption, Refraction and Reflection.	
	X-ray tubes, Synchrotron radiation, Bending magnet	
	sources, Undulator radiation, Wiggler radiation. X-ray	
	detection	101
	4. Nuclear Spectroscopy	12 hours
	Nuclear Magnetic Resonance:Principles, Classical	
	treatment of NMR (Bloch equations), experimental	
	methods, Chemical shift, Knight shift in metals, spin-	
	lattice relaxation, Applications	

Number of Credits:4 Effective from AY: 2021-22

Pedagogy:	Mossbauer Spectroscopy: Principles, The Debye-Waller Factor, Mossbauer Sources and Experimental Apparatus, Isomer Shifts, Electric quadrupole interaction, Magnetic Dipole Interaction, Quadratic Doppler effect, Results of Mossbauer spectroscopy. lectures/ tutorials/ seminars/ assignments/ presentations/ etc. or a combination of some of these.
References/Readings	 B. H. Bransden and C. J. Joachain; Physics of Atoms and Molecules; Pearson; 2008/2nd Ed C. N. Banwell and E. M. McCash; Fundamentals of Molecular Spectroscopy, Tata McGraw;2004/4thEd. H. E. White; Introduction to Atomic Spectra; Tata McGraw Hill; 1934. K. Thayagarajan and A.K Ghatak; Lasers Theory and Applications; Macmillan (Tata McGraw Hill) 1995. D. Satyanarayana; Handbook of Molecular Spectroscopy; I K International Publishing House, 2015, 1st edition J. Als-Nielsen, D. McMorrow; Elements of Modern X-ray Physics; Wiley; 2011. G. Schatz and A. Weidinger; Nuclear condensed matter physics: nuclear methods and applications; John Wiley; 1997. H. Kuzmany; Solid-state spectroscopy; Springer; 2009. A. H. Kitai; Solid State Luminescence; Chapman and Hall London; 1993. Luminescence of Solids edited by D. R. Vij, Plenum Press, New York, 1998.
Learning Outcomes	 Explain different spectroscopic techniques Better understanding of atomic and molecular physics Apply the techniques in experimental characterisation of materials.