Programme: M. Sc. (Physi	ics)	
Course Code: PHSO-311	Title of the Course: Phase Transitions and Critical	
Phenomena		
Number of Credits: 4		
Effective from AY: 2021-2	22	
Prerequisites for the B	asic knowledge of Thermodynamics and Statistical	

Prerequisites for the	Basic knowledge of Thermodynamics and Statistical	
course:	Mechanics	
Objective:	This course is designed to familiarize students with general	
	and specific aspects of phase transitions, teach them the	
	concept of symmetry and spontaneous breaking thereof and	
	theoretical understanding within the realm of Landau's	
	mean field theory.	
Content:	1 Phenomenology of phase transitions	4 hours
	The role of symmetry and the onset of order, switching of	1 nouis
	the degree of order, Example of atomic site ordering,	
	Ferroelectric phase transitions, how to observe a phase	
	transition, Order of a phase transition, General aspects of	
	the thermodynamics of a phase transition, Seeds of a	
	theoretical model, Examples	4 hours
	2. Magnetic phase transitions	
	Macroscopic and microscopic views of magnetism, Non-	
	interacting atoms in a magnetic field: forromagnetism,	
	Critical exponents revisited Successes and failures of the	
	mean-field model	
	3. Landau theory	12hours
	Introduction, Quantification of the free energy, Results	
	for second-order phase transitions, Field-dependence of	
	the order parameter at the transition temperature, Taking	
	account of spatial variations, Validity of Landau theory,	
	Ferromagnetism, the mean-field approximation, and	
	Landau theory, First-order phase transitions, The case	
	when the free energy is allowed to have odd-order terms,	
	transitions and electic strain formelectric phase	
	transition superfluid Mott insulator phase transition	
	4 The role of symmetry	12hours
	Introduction to Symmetry, Point group symmetry	
	operations, Space group symmetry operations, Groups	
	and their representations, Symmetry of the order	
	parameter, Symmetry of the spontaneous strain, Group-	
	subgroup relationships across phase transitions	
	5. Soft modes and displacive phase transitions	4 hours
	Displacive phase transitions, Phenomenology of the soft	
	mode model of displacive phase transitions, Lattice	
	theory of the low temperature phase Phase transitions	
	soft modes and structure flexibility: the Rigid Unit Mode	
	model	4 hours

	6. Order-disorder phase transitions	
	Order-disorder phenomenology, Mean-field theory of	
	order-disorder phase transitions: Bragg-Williams model,	
	Computational methods, Beyond Bragg- Williams	
	theory: the Cluster Variation Method	
	7. Critical point phenomena	1 hours
	The Widom scaling hypothesis: relationships between	4 110015
	critical exponents, Introduction to the renormalisation	
	group, Deriving the Widom scaling hypothesis, A	
	sketched example: the 1D Ising model	4.1
	8. Reconstructive Phase transitions	4 hours
	Introduction and definition, Examples, Thermodynamics	
	of reconstructive Phase transitions	
Pedagogy:	lectures/ tutorials/ seminars/ assignments/ presentations/ etc.	
	or a combination of some of these.	
References/Readings	1. Binney, J. J., N. J. Dowrick, A. J. Fisher, and M. E. J. Newman,	
	The theory of critical phenomena: An introduction to the	
	renormalisation group. Oxford: Clarendon Press, (1992).	
	2. Blundell, S., Magnetism in condensed matter. Oxford: Oxford	
	University Press, (2001).	
	3. Burns, G. and A. M. Glazer, Space groups for solid state	
	A Dove M T Structure and dynamics Oxford: Oxford	
	University Press. (2003).	
	5. Goldenfeld, N., Lectures on phase transitions and the	
	renormalisation group. Reading, MA: Addison-Wesley,	
	(1992).	
	6. Muller, U. Symmetry relationships between crystal structures.	
	Oxford: Oxford University Press, (2013).	
	7. Nishimori, H. and G. Ortiz, Elements of phase transitions and	
	critical phenomena. Oxford: Oxford University Press, (2011).	
	8. Salje, E. K. H., Phase transitions in terroelastic and co-elastic article. Student Edition, Combridge University Press, (1002)	
	9 Tol'edano I-C and P Tol'edano The Landau theory of phase	
	transitions Singapore: World Scientific (1987)	
	10. Yeomans, J. M. Statistical mechanics of phase transitions.	
	Oxford: Clarendon Press, (1992).	
Learning Outcome	The student is expected to obtain considerable insight into	
	various types of phase transitions, and their classification;	
	identify phase transition and how these can be described	
	theoretically using Landau mean field theory	