Programme: M. Sc. (Physics) Course Code: PHO-309

Title of the Course: Physics of Non-conventional Energy Sources

Number of Credits: 4 Effective from AY: 2018-19

Effective from AY: 201	10 12	
Prerequisites for the	Student should have studied the energy science at B.Sc.	
course:	level and aware of different types of renewable energy	
	sources and how to harness energy from them.	
	sources and now to namess energy from them.	
Objective:	To develop the awareness among M.Sc. II students about	
	different types of energy sources and their application to	
	solve the present energy crisis and our day to day need of	
	energy.	
	It also helps them to understand the basic physics involved	
	in different ways by which they can extract the energy from	
	wind, ocean, biomass, geothermal, solar energy sources.	
	It also give them basic understanding of fuel cell and	
	hydrogen as an energy source for future generations.	
	liyarogen as an energy source for fature generations.	
Content:	1. An Introduction to Energy Sources	20
<u> </u>	Renewable and non-renewable energy sources, energy	hours
	consumption Global and National scenarios, Prospects of	Bours
	non-conventional Energy Sources- scope and potential.	
	Solar radiations	
	Extra terrestrial radiation, Spectral distribution of solar	
	radiation. Solar constant, Measurement of solar radiations.	
	Solar radiation geometry, Flux on a plane surface, Latitude,	
	Declination angle, Surface azimuth angle, Hour angle, Zenith	
	angle, Solar altitude angle, expression for angle between	
	incident beam and the normal to a plane surface.	
	Solar energy	
	Solar thermal power and it's conversion, Solar collectors,	
	Flat plate, Performance analysis of flat plate collector, Solar	
	concentrating collectors, Types of concentrating collectors,	
	Thermodynamic limits to concentration, Cylindrical	
	collectors, Thermal analysis of solar collectors, Tracking	
	CPC and solar swing . Solar thermal energy storage,	
	Different systems, solar pond.	
	Different systems, some pond.	
	Applications: Water heating, Space heating & cooling, Solar	20
	distillation, solar pumping, solar cooking, Greenhouses,	hours
	Solar power plants.	
	Solar photovoltaic system	
	Photovoltaic effect, Efficiency of solar cells, Semiconductor	
	materials for solar cells, Solar photovoltaic system,	
	, , , , , , , , , , , , , , , , , , , ,	

	Standards of solar photovoltaic system, Applications of PV	
	system, PV hybrid system.	8 hours
	2. Wind Energy Principle of wind energy conversion; Betz model, wind	0 110 111
	mills-horizontal axis and vertical axis, horizontal axis wind	
	turbines, their components. Vertical axis- Magnus effect,	
	Madaras & Darrieus turbine. Analysis of aerodynamic forces	
	acting on wind mill blades and estimation of power output.	
	3. Energy from Biomass	
	Photosynthesis, Bio gas production Aerobic and anaerobic	4 hours
	bio-conversion process, Raw materials, Properties of bio gas,	
	Producer gas, Biomass conversion technologies, Biogas	
	generation plants, classification, advantages and	
	disadvantages, Fuel properties of bio gas, utilization of	
	biogas.	
	4. Geothermal Energy	
	Structure of earth's interior, geothermal sites, geothermal	
	resources. Principle of working, Estimation and nature of	4 hours
	geothermal energy, Types of geothermal stations, advanced	
	concepts, Problems associated with geothermal conversion.	
	5. Energy from the ocean	
	Principle of ocean thermal energy conversion, systems like	
	open cycle, closed cycle, Hybrid cycle, Energy from tides,	6 hours
	basic principle of tidal power, single basin and double basin	
	tidal power plants, advantages, limitation and scope of tidal	
	energy. Wave energy conversion machines, power plants	
	based on ocean energy advantages and disadvantages of	
	wave energy.	
	6. Fuel Cells	
	Introduction, Design principle and operation of fuel cell,	
	Types of fuel cells, conversion efficiency of fuel cell,	
	application of fuel cells. Efficiency of fuel cells, operating	
	characteristics of fuel cells, Advantages and future potential	3 hours
	of fuel cells.	
	7. Hydrogen Energy	
	Properties of hydrogen as a source of renewable energy,	3 hours
	Hydrogen Production methods, Hydrogen storage, hydrogen	
	transportation, utilization of hydrogen gas as a fuel, hydrogen	
	as alternative fuel for vehicles. Development of hydrogen	
	cartridge.	
Pedagogy:	lectures/ tutorials/laboratory work/ field work/ / project	
	work/viva/ seminars/term papers/assignments/	
	presentations/ self-study	

Learning Outcomes:	1 General awareness among students regarding energy
	sector, its scenarios and crisis.
	sector, its section of und crisis.
	2 How to harness energy from different non-conventional
	energy sources like sun, wind, geothermal energy, ocean,
	fuel cell, biomass, hydrogen etc
	inei cen, olomass, nyulogen etc
	3 The basic physics and technical intricacies involved in
	energy extraction from non conventional energy sources.
	4. Understand the importance of utilizing energy wisely or
	else to face the dire consequences.
	_
References/Readings	 N. K. Bansal, Manfred Kloemann, Michael Meliss,
	Renewable energy sources and conversion technology, Tata
	Mc Graw Hill (1990). 2. D.P. Kothari, K. C. Singal, R. Ranjan, Renewable energy
	 D.P. Kothari, K. C. Singal, R. Ranjan, Renewable energy resources and emerging technologies. Prentice Hall of India.
	Pvt. Ltd (2011).
	Rai G.D. Non-Conventional energy Sources, Khanna
	Publishers (2011).
	4. Ashok V. Desai, Nonconventional Energy, New Age
	International Publishers Ltd (2005).
	 J. Twidell and T. Weir, Renewable Energy Sources, Taylor &
	Francis (1986).
	 Sukhatme, Solar Energy, Tata McGraw-Hill Education,
	(1996). 7. B. S. Mangal, Solar Power Engineering, McGraw-Hill
	Figure 1. B. S. Mangal, Solar Power Engineering, McGraw-Hill Education (India) Pvt Limited, (1999).
	8. D. Yogi Goswami, Frank Kreith, Jan F. Kreider, Principles of
	Solar Energy, Taylor & Francis (2000).