Programme: M. Sc. (Physics)			
Course Code: PHO-302Title of the Course: Neutron Physics			
Number of Credits: 4			
Effective from AY: 2018-19			
Prerequisites for the	Should have basic knowledge of electrodynamics,		
<u>course:</u>	thermodynamics and quantum mechanics, and solid state		
	physics		
Objective:	To develop the equations that describe the neutron		
	population in a critical nuclear reactor; calculation of		
	critical size with and without a reflector blanket; kinetics of		
	the reactor including all factors affecting criticality during		
	operation; description of reactor types; radiation dose units;		
	disposal		
Content:	L Interaction of Neutrons with Matter:	5 hours	
<u>Content.</u>	Interaction of neutrons with matter cross-section and	5 110015	
	variation with neutron energy Neutron flux Maxwellian		
	distribution. Fissile and fertile materials. Chain reaction and		
	neutron life cycle. Fermi four factor formula keff.		
	II.Neutron Diffusion:	6 hours	
	Diffusion theory approximation, derivation of diffusion		
	equation. Neutron balance and critical equation. Boundary		
	conditions and extrapolation distance. Diffusion length and		
	its measurement.	0.1	
	III. Slowing down of Neutrons:	8 hours	
	Slowing down length, lethargy, slowing down in a mixture.		
	Moderations. Slowing down models.		
	IV. Calculation of Critical Size of Reactors:	5 hours	
	Critical equation. One group model, four factor formula and		
	calculation of parameters. Critical size of sphere and		
	V Barran Or and the set		
	V. Power Operation:	11 hours	
	Reactor kinetics, mean neutron lifetime. The In-Hour		
	to temperature. Fission product poisoning. Fuel hurn-up		
	Measurement or reactor power and period		
	VI Reactor Types and Economics:		
	Descriptions of MAGNOX CANDU fast reactor	5 hours	
	Calculation of total generation cost.		
	Comparison with economics of oil fired plant. Influence of		
	economics on nuclear plant design.		
	VII. Radiological Protection:	3 hours	
	Units of radiation and radioactivity. Concept and derivation		
	of safe working levels. Monitoring instruments and		
	methods.		
	VIII. Reactor Fuels and Materials:	3 hours	
	Uranium resources and requirements. Isotope separation.	5 110015	

	(one method). Fuel reprocessing. Storage and disposal of	
	nuclear waste – consideration of different methods.	
	IX.Nuclear Policy:	
	Elements of India's Nuclear Policy. Examples of Policy of	
	other countries.	
	X. Field trip to a nuclear establishment such as the	
	Dhruva Reactor, Bhabha Atomic Research Centre,	
	Mumbai or Kaiga Nuclear Plant, Karwar or any other	
	nuclear reactor establishment which gives permission for	
	the visit of students accompanied by the teacher(s) of the	
	course. The visit is to be organized with the aim of	
	helping students better understand and appreciate the	
	aggregament of the student's understanding is to be done	
	through an assay on a choice of topics relevant to the	
	narticular nuclear establishment that is visited. It shall be	
	considered as a compulsory Intra Semester Assessment of	
	the course	
Pedagogy:	Lectures, Tutorials, Field trip	
Defenences/Deadings	1 Classion and A Saconska Nuclear Departor	
Kelerences/Keaunigs	1. S. Oldssione and A. Sesonske, Nuclear Reactor Engineering Van Nostrand Reinhold Co. (1963)	
	2. E. E. Lewis, Fundamentals of Nuclear Reactor Physics,	
	Elsevier (2008).	
	3. Safe Handling of Radioisotopes (Safety Series no. 1)	
	(1958).	
	4. Atomic Energy Waste. Editor E. Glueckaut,	
Looming Autoomos	(Butterwortns) (1901).	
Learning Outcomes	Failing that determine its oriticality. Amorphase of the	
	conditions that determine its criticality. Awareness of the	
	many uses of neutrons and radioactive materials.	