Programme: M. Sc. (Physics)

Effective from AV• 202	1-22	
Prerequisites for the	NIL	
course:		
Objectives:	This course develops problem solving capabilities of	
Objectives.	this course develops problem solving capabilities of	
	students. It also helps to revise and understand the concepts	
	based on Integration, differentiation and such other basic	
	topics of mathematics, which are useful in solving	
	problems based on Physics.	
Content:	1. Preliminary Calculus	8 hours
	Differentiation from first principles; products; the chain	
	rule; quotients; implicit differentiation; logarithmic	
	differentiation; Leibnitz' theorem; special points of a	
	function; theorems of differentiation, Integration from first	
	principles; the inverse of differentiation; integration by	
	inspection; sinusoidal functions; logarithmic integration;	
	integration using partial fractions; substitution method;	
	integration by parts; reduction formulae; infinite improper	
	integrals; plane polar coordinates; integral inequalities;	
	applications of integration	4 hours
	2. Partial Differentiation	
	Definition of partial derivative; the total differential and	
	total derivative; Exact and inexact differentials; Useful	
	theorems of partial differentiation; the chain rule; Change	
	Stationary values of many variable functions. Stationary	
	variables under constraints: Thermodynamic relations:	
	Differentiation of integrals	1 hours
	3 Series and Limits	4 110015
	Series: Summation of series (arithmetic geometric):	
	convergence of infinite series: Operations with series:	
	Power series: Taylor series: Evaluation of limits.	4 hours
	4. Vector Algebra	1 110 415
	Scalars and vectors; Addition and subtraction of vectors;	
	Multiplication by a scalar; Basis vectors and components;	
	Magnitude of a vector; Multiplication of vectors; Equation	
	of lines and planes; Using vectors to find distances;	
	Reciprocal vectors.	4 hours
	5. Ordinary differential equations	
	Linear equations with constant coefficients; Linear	
	equations with variable coefficients; General ordinary	
	differential equations.	
Pedagogy:	lectures/ tutorials/assignments/self-study	
<u>References/Readings</u>	1. K.F. Riley, M.P. Hobson and S.J. Bence, Mathematical	
	Methods for Physics and engineering, Cambridge University	
	Press, Cambridge UK (Reprint 2002).	
	2. George B. Arfken and Hans J. Weber, Mathematical methods	

Course Code: PHGC-100Title of the Course: Bridge Course in Mathematical MethodsNumber of Credits: 2

	for Physicists, 7/e Elsevier Inc., 2012.	
	NTSE/CBSE/Goa Board.	
Learning Outcomes	1. Conceptual understanding of the meaning of the	
	differentiation, partial differentiation, integration, ODE	
	(Ordinary differential equations) and its application to	
	solve the problems based on physics.	
	2. Understand the vector algebra, series and its application	
	in solving the problems in physics and day to day life.	