Programme: M. Sc. Part-II (Chemistry) Course Code: PCO-504 Title of the Course: Chemical kinetics and reaction dynamics Number of Credits: 03 Effective from AY: 2019-20

Prerequisites	Students should have studied the course PCC- 401, PCO- 401 in	No. of
for the	Semester I/II, so as to have basic knowledge of reaction kinetics.	lectures/hours
course:		
0	1. To introduce concents of reaction kinetics and dynamics	
Course	1. To introduce concepts of reaction kinetics and dynamics	
Objectives:	2. To provide fundamental knowledge of theories that govern	
	chemical reactions	
	3. To introduce newer classes of reaction types and their kinetics	
	4. To introduce latest developments in the advance instrumental	
	techniques and methods for monitoring reaction kinetics and	
	dynamics.	
Course	1. Students should be in a position to understand the concept of	
Outcomes:	reaction kinetics and its significance.	
	2. Student will be able to differentiate between different reaction	
	types, their kinetic analysis and its significance	
	3. Students should be able to apply these kinetic concepts to	
	perform laboratory experiments in reaction kinetics.	
	3. Students should be in a position to apply these concepts of real	
	systems and atmospheric chemistry research	
Content	10 Theories of reaction rates	8 hr
content.	1.1 Constalized kinetic theory and extended collision theory	011
	Concept of collisional number collisional frequency factor	
	collisional and reactive cross section steric factor	
	microscopic rate constant Assumptions and limitations of	
	collision theory	
	1.2 Conventional transition state theory, equilibrium hypothesis	
	and derivation of reaction rates. Thermodynamic formulation	
	of transition state theory. Arrhenius temperature dependent	
	and independent activation energy and its significance	
	Assumptions and limitations of transition state theory.	
	Introduction to extended transition state theory and	
	microscopic reversibility.	
	1.3 Lindemann-Hinshelwood theory of thermal unimolecular	
	reactions. Statistical energy dependent rate constant.	
	Introduction to RRK and RRKM Theory and its applications.	
	5 11	
	2.0 Elementary reactions in solutions	2 6
	2.1 Collisional kinetics in solution effect of solvent polarity	3 Nr
	solvent cohesion energy influence of ionic strength and ion	
	dipole and dipole dipole reactions on reaction with	
	upole and upole-upole reactions on reaction rates.	
	comparison of gas phase and solution reactions.	8 hr
	3.0 Homogeneous and surface reactions	

3.1 Homogeneous kinetics, enzymatic reactions and Michaelis-	
Menten, Lineweaver-Burk and Eadie Analysis	
3.2 Autocatalytic and inhibition reactions. Product induced	
competitive and non-competitive inhibition reactions.	
3.3 Adsorptions: competitive pon-ideal and dissociative	
adsorptions. competitive, non-ideal and dissociative	
2.4 Machanism of surface reactions kinetic effects of surface	
3.4 Methallishi of surface reactions, kinetic effects of surface	
neterogeneity and interactions.	
3.5 Eley-Rideal, Langmuir Hinshelwood and Mars van Krevelen	
kinetic models of surface reactions	
4.0 Composite reactions	4 hr
4.1 Types of composite mechanisms, rate equation for composite	710
mechanisms, simultaneous and consecutive reactions	
4.2 Decomposition reactions of ozone and acetaldehyde	
4.3 Gas phase combustion reactions bydrogen – oxygen	
combustion introduction to shock tube method and its use	
in compution analysis	
A A Delymerization kinetics, stanuids and shain nelymerization	
4.4 Polymerization kinetics, stepwise and chain polymerization.	
	Г h.,
5.0 Fast Reactions	5 11
5.1 Photochemical fast reactions: primary photochemical	
processes, reactions of electronically excited species and	
photochemical equivalence.	
5.2 Pulsed laser photolysis, multiphoton excitation processes and	
its use in monitoring fast reactions.	
5.3 Radiation-chemical reactions: radiation chemical primary	
processes, kinetic measurements in radiolysis method.	
5.4 Comparison of relaxation method and stopped flow	
technique.	
6.0 Reversible Irreversible and Oscillatory reactions	
6.1 Kinetics of reversible irreversible reactions and graphical	4 nr
analysis	
6.2 Voltora Lotka hypothesis of oscillatory reactions. The	
0.2 Voltera-Lotka hypothesis of oscillatory reactions. The	
significance of bi-stability in the Briggs-Rauscher Reaction	
and Belousov-Zhadotinskii reaction.	
7 Departies Dumentics	
7 Reaction Dynamics	4 hr
7.1 Reactive collisions, cnemiluminescence and laser induced	
tluorescence.	
1.2 Introduction to potential energy surfaces, internal coordinates	
and modes of vibration with suitable examples.	
7.3 Introduction to molecular reaction dynamics, investigation of	
reaction dynamics with ultrafast lasers.	

Pedagogy:	Mainly lectures / tutorials. Seminars / assignments / presentations / self-study or a combination of some of these could also be used to some extent.	
Text Books / References	 K. J. Laidler, Chemical Kinetics, Pearson Education, 1987; (printed in India by Anand Sons,2004), 3rd edition. P.W. Atkins and J. De. Paulo, Atkins' Physical Chemistry, Oxford University Press, 2007, 8th edition. J. I. Steinfeld, J. S. Francisco and W. L. Hase, Chemical Kinetics and Dynamics, Prentice Hall, 1999, 2nd edition. D. K. Chakrabarty and B. Viswanathan, Heterogeneous Catalysis, New Age International Publishers, 2008 S. K. Scott, Oscillations, waves and Chaos in chemical kinetics, Oxford Science Publications, 1994. Thomas S. Briggs, and Warren C. Rauscher, An oscillating iodine clock, J. Chem. Educ., 1973, 50 (7), 496 	