Programme: M. Sc. Part-II (Chemistry) **Title of the Course:** Group Theory and Spectroscopy **Course Code:** PCC-504

Number of Credits:02			
Proroquisitos	Should have studied the courses PCC-401_PCC-402 and PCO-401	No of	
for the course:	Should have basic knowledge of Physical Chemistry.	lectures	
Course	To introduce concepts in Group Theory and it applications to		
Objectives:	chemistry.		
	To introduce some advance topics in spectroscopy.		
Course	Students should be in a position to understand various concepts of		
Outcomes:	in Group Theory. Should be able to apply character table to solve		
	various problems.		
	Students should be in a position to apply the knowledge of		
	spectroscopy for their dissertation and research work.		
Content:	4. Elements of Group Theory	18 hours	
	1.1 Symmetry elements and symmetry operations, Concept of		
	group and group multiplication tables, order of the group,		
	classes and subgroups in a group, Different types of groups		
	(cyclic, abelian and non-abelian groups).		
	1.2 Point groups, Matrix representations of a group, Reducible and		
	Iffeducible representations groups, Great Orthogonality		
	symbols for Irroducible representations. Character tables		
	1.3 Standard reduction formula. Direct products of representations		
	and it applications Quantum Chemistry and spectroscopy:		
	Vanishing of integrals, Selection rules, Applications of group		
	theory for hybridization of atomic orbitals. Projection operator		
	and Symmetry adapted linear combinations (SALCs), MO		
	treatment (within Huckel Molecular Orbital Theory) of large		
	molecules with symmetry. Applications of group theory to Infra-		
	red and Raman spectroscopy.	(hours	
	2. Microwave, IR and Raman Spectroscopy	6 10015	
	2.1 Theoretical treatment of Rotational and Vibrational		
	spectroscopy.		
	2.2 Principle of Fourier transform (FT) spectroscopy, FTIR		
	2.3 Quantum theory of Paman effect Paman shift Instrumentation		
	Resonance Raman spectroscopy Complimentary nature of IR		
	and Raman spectroscopy in structure determination.		
	Applications.		
	3. NMR Spectroscopy	8 hours	
	3.1 Basic principles of NMR.		
	3.2 Theory of pulse NMR and Fourier analysis, FT-NMR.		
	3.3 Solid state NMR, magic angle spinning (MAS), dipolar		
	decoupling and cross polarization, applications of solid state		
	NMR.		
	3.4 Double resonance, NOE, Spin tickling, Solvent and shift		
	reagents, Structure determination by NIVIR.	4 hours	
	4. ESR Spectroscopy		

	 4.1 Theory and experimental techniques, Identification of odd- electron species (methyl and ethyl free radicals) and radicals containing hetero atoms. 4.2 Spin trapping and isotopic substitution, Spin densities and McConell relationship, Double resonance techniques. 	
Pedagogy:	Mainly lectures/ tutorials /assignments/ presentations/ self-study	
	interactive in nature to enable peer group learning.	
Text Books/	8. P.W. Atkins & J. De. Paulo, Atkins' Physical Chemistry, Oxford	
Reference	Univ. Press, 2007, 8 th Ed.	
Books	9. F.A. Cotton, <i>Chemical Applications of Group Theory</i> , John Wiley & Sons-Asia, New Delhi, 1999, 3 rd Ed.	
	10. K. V. Raman, <i>Group Theory and its applications to chemistry</i> , Tata McGraw-Hill, New Delhi.	
	11. C. N. Banwell & E.M. McCash, <i>Fundamentals of Molecular Spectroscopy</i> , Tata McGraw-Hill, New Delhi, 1994.	
	12. W. Kemp, <i>NMR in Chemistry a multinuclear introduction</i> , Macmillan, 1986.	
	13. R.S. Drago, <i>Physical Methods in Chemistry</i> , W.B. Saunders Company, 1977.	