Programme: M. Sc. Part-I (Chemistry)

Course Code: PCC-402 Title of the Course: Laboratory Course in Physical Chemistry
Number of Credits: 02 Effective from AY: 2018-19

Prerequisites	Should have studied the courses in Chemistry at F Y B Sc, S Y B Sc & T Y B Sc	
for the course:	levels so as to have basic knowledge of Physical Chemistry and basic principles.	
Course	1. Introduction of various concepts on thermodynamics.	
Objectives:	2. Introduction of electro chemistry and kinetics.	
Course	1. Students should be in a position to understand various concepts in physical	
Outcomes:	chemistry by conducting experiments.	
	2. Students should be in a position to apply these concepts during the lab course	
	in physical chemistry.	
Content:	1. To study the kinetics of hydrolysis of ethyl acetate and to determine a) Energy	48
	of activation b) Entropy of activation and c) Free energy change.	hrs
	2. To study the kinetics of the reaction between Potassium per sulphate	
	(K), and Potassium iodide (KI), and to determine a) Energy of	
	activation b) Entropy of activation and c) Free energy change.	
	3. To determine the order of reaction between potassium persulphate and	
	potassium iodide by graphical, fractional change and differential	
	methods.	
	4. To determine the degree of hydrolysis of salt of weak base and strong acid	
	using conductometer.	
	5. To determine the composition of a mixture of acetic acid, dichloroacetic acid	
	and hydrochloric acid by condoctometric titration.	
	6. To determine the dissociation constants of a dibasic acid and obtain derivative	
	plot to get equivalence point. 7. To determine the dissociation constants of a tribasic acid (Phosphoric acid	
	obtain derivative plot to get equivalence point.	
	8. To determine formal redox potential of Fe ²⁺ /Fe ³⁺ and Ce ³⁺ /Ce ⁴⁺ system obtain	
	derivative plot to get equivalence point.	
	9. To study the three component system such as toluene, ethanol and water.	
	10. To study the three component system such as acetic acid, chloroform; and	
	water and obtain tie line.	
	11. To determine the molecular weight of polyvinyl alcohol by viscosity	
	measurement.	
	12. To determine the molecular weight of polystyrene by viscosity measurement.	
	12. To determine the morecular weight of polystyrene by viscosity measurement.	
Pedagogy:	Lectures / tutorials / seminars / term papers /assignments / presentations / self-	
	study or a combination of some of these. Sessions shall be interactive in nature to	
	enable peer group learning.	
References/	1. A. Finlay & J.A. Kitchener, "Practical Physical Chemistry", Longman	
Readings	2. F. Daniels & J.H. Mathews, "Experimental Physical Chemistry", Longman.	
	3. A.M.James, "Practical Physical Chemistry",	
	4. D.P. Shoemaker & C.W. Garland, "Experimental Physical Chemistry",	
	McGraw-Hill.	