Programme: M. Sc. Part-I (Chemistry) Course Code: PCC-401 Number of Credits: 03

Title of the Course: General Physical Chemistry Effective from AY: 2018-19

Prerequisites	Should have studied the courses in chemistry at F.Y B.Sc, S.Y B.Sc & T.Y	
for the	B.Sc levels so as to have basic knowledge of Physical Chemistry and basic	
course:	principles.	
Course	6. Introduction of various concepts on thermodynamics.	
	 7. Introduction of electro chemistry and kinetics. 	
Objectives:	8. Learning quantum chemistry.	
Course	8. Students should be in a position to understand various concepts in	
Outcomes:	physical chemistry.	
outcomes.	9. Students should be in a position to apply these concepts during the lab	
	course in physical chemistry.	
	10. Students shall be in a position to answer the NET/SET examination	
	questions based on these topics.	
Content:	1. Thermodynamics	10 hrs
	1.1 Thermodynamic properties: Gas laws, Real gasses, Boyle temperature,	
	Critical temperature, State and path properties. Intensive and extensive	
	properties. Exact and inexact differentials. Internal energy, enthalpy,	
	entropy, free energy and their relations and significances. Maxwell	
	relations. Thermodynamic equations of state.	
	1.2 Joule-Thomson effect. Joule-Thomson coefficient for van der Waals'	
	gas. Joule-Thomson effect and production of low temperature,	
	adiabatic demagnetization, Joule-Thompson coefficient, inversion	
	temperature.	
	1.3 The third law of thermodynamics. Need for the third law. Apparent	
	exceptions to third law. Application of third law. Use of	
	thermodynamic functions in predicting direction of chemical change.	
	Entropy and third law of thermodynamics.	
	1.4 Phase equilibria: Phase rule, Discussion of two component systems	
	forming solid solutions with and without maximum or minimum in	
	freezing point curve. Systems with partially miscible solid phases.	
	1.5 Three component systems: Graphical representation. Three	
	component liquid systems with one pair of partially miscible liquids.	
	Influence of temperature. Systems with two pairs and three pairs of	
	partially miscible liquids. The role of added salts.	
	2.Electrochemistry	06 hrs
	2.1 EMF series, decomposition potential and overvoltage,	
	electronegativity, basic principles, completeness of deposition,	
	Separation with controlled potentials, constant current electrolysis,	
	composition of electrolyte, potential buffers, physical characteristics of	
	metal deposits.	
	2.2 Electroplating and electroless plating, electrosynthesis.	
	2.3 Concepts of acid-base aqueous and non-aqueous solvents, hard and soft	
	acid-base concept and applications.	
	and ouse concept and approvidents.	
		l

	3.Chemical Kinetics	
		07 hrs
	3.1 General introduction to various types of order of reaction including	07 111 5
	fractional order, Molecularity of the reaction.	
	3.2 Introduction to reversible and irreversible reactions and reactions	
	leading to equilibrium. Van'tHoffs equation and analysis of Gibbs free	
	energy of equilibrium reactions.	
	3.3 Collision Theory and Maxwell Boltzmann distribution of energies of	
	colliding molecules(derivationnotrequired). The concept of collisional	
	cross section and reactive cross section and its significance.	
	3.4 Comparative study of transition state and collision state theory	
	(derivation not required).	
	3.5 Free radical reactions, Complex reactions such as acetaldehyde	
	decomposition and reaction between H_2 and Br_2 , Homogeneous	
	reactions and acid-base catalysis.	
	3.6 Elementary enzyme reactions.	
	4. Quantum Chemistry	13 hrs
	4.1 Operators, Functions, Eigen value equations, Postulates.	10 110
	4.2 Schrodinger equation, application to simple system viz. free particle,	
	particle in one dimensional, two dimensional and three dimensional	
	box (quantization, separation of variables, degenerate wave functions).	
	4.3 Hydrogen like atoms, Schrodinger equation and its solutions, atomic	
	orbital wave functions and interpretation.	
	4.4 Hückel MO theory, Secular equations, Secular determinant,	
	delocalization energy, charge density, π -bond order, free valence,	
	applications to C_2H_4 , C_3H_5 (radical), C_4H_6 , C_4H_4 , C_6H_6 , C_6H_8	
Pedagogy:	Mainly lectures & tutorials. Seminars / term papers /assignments /	
I cuagogy.	presentations / self-study or a combination of some of these may be used.	
	Sessions shall be interactive in nature to enable peer group learning.	
References/	1. P. W. Atkins and J. D. Paula, <i>Physical Chemistry</i> , Eighth Edition, Oxford	
Readings	University Press, (2007) New Delhi.	
Reauings	2. G. M. Barrow, <i>Physical Chemistry</i> , Fifth Edition, Tata McGraw Hill,	
	(2016) New Delhi.	
	3. J. E House, <i>Principles of Chemical Kinetics</i> (Second edition) Academic	
	Press,2007 Elsevier Burlington, USA	
	4. I. N. Levine, <i>Quantum Chemistry</i> , Seventh Edition, Prentice-Hall, (1999)	
	New Delhi.	