Programme: M. Sc. (Chemistry)Course Code: OCO-508Title of the Course: Selected Experiments in Organic Chemistry-INumber of Credits: 4				
<u>course:</u>	Organic Chemistry at M Sc Part-I levels.			
Course Objective:	To translate certain theoretical concepts learnt earlier into experimental knowledge by providing hands on experience of basic laboratory techniques required for organic syntheses.			
<u>Course Outcome</u>	 Students shall gain the understanding of: Stoichiometric requirements during organic syntheses. Safe and Good laboratory practices, handling laboratory glassware, equipment and chemical reagents. Common laboratory techniques including reflux, distillation, steam distillation, vacuum distillation, aqueous extraction, thin layer chromatography (TLC), reactions under dry conditions, use of microwave, photochemistry, low temperature synthesis etc. Use of organic spectroscopic techniques in monitoring the organic syntheses. 			
Content:	(Group A: minimum 8 experiments)	48 hours		
	 Dimedone from mesityl oxide (Dieckmann condensation). 1,2,3.4-tetrahydrocarbazole from cyclohexanone (Fisher indolisation reaction). o-Chlorobenzylidene rhodanine (Perkin reaction). 			
	 Diels- Alder reaction of anthracene and maleic anhydride using microwave irradiation. 			
	 5. Oxidation of a primary / secondary alcohol to carbonyl compound by polymer supported chromic acid (Amberlyst A - 26, chromate form). 			
	 6. Phenytoin from benzil and urea. 7. Use of protecting groups: Synthesis of 1 ,1-diphenylbut-1- en-3-one 			
	 Ethyl acetoacetate ethylene acetal. 1,1-Diphenyl -1-hydroxy-3- butanone ethylene acetal. 1,1-Diphenyl -1-hydroxy- 3-butanone. 1,1-Diphenylbut-1-en-3 -one. 			
	 8. Isoborneol from camphor (NaBH₄ reduction) 9. 3 -Methyl -2-phenyl-2-butanol from 2-bromopropane and acetophenone 			
	10. Friedel- Crafts acylation of anisole.			

	11. Diethyl 4- butyl malonate by malonic ester condensation		
	(GROUP B: minimum 8 experiments)		
	1. Epoxidation of cholesterol or related compounds		
	2. 2,2 - dichloro bicyclo (4.1.0) heptane from cyclohexene and		
	dichloro cabene using PTC.		
	 Reduction of Nitrobenzene to aniline by Sn / HCl. 2 - methyl benzimidazole from o-phenylene diamine. 		
	 S. Benzophenone oxime to benzanilide (Beckmann) 		
	rearrangement).		
	6. Ferric chloride oxidative coupling of 2-naphthol: 2,2'-		
	dihydroxy dinaphthyl		
	7. Dicoumarol from coumarin derivative.		
	8. LAH reduction of Anthranilic acid.		
	9. Norborneol to norcarnphor using chromiurn		
	trioxide/sulfuric acid		
	10. Halogenation using NBS: preparation of 9-bromoanthracene		
	(or benzylic bromides)		
	11. Benzhydrol from benzaldehyde (Grignard reaction)		
	12. Ethyl n-butyl acetoacetate by acetoacetic ester		
	condensation		
	Note: Students are expected to use techniques like TLC, IR,		
	GC for monitoring/ establishing purity, identity of the		
	synthesized compounds.		
Pedagogy:	Lectures/ pre-lab and post-lab exercises/ laboratory work		
<u>redayoyy</u> .	/assignments/ presentations/ self-study/ Case Studies etc. or a		
	combination of some of these. Sessions shall be interactive in		
	nature to enable peer group learning.		
	The students are required to undertake pre-lab. and post – lab.		
	assignment as instructed by the concerned teacher and the		
	same may be evaluated by according suitable weightage as an		
	ISA component while prescribing the mode of assessment.		
References/Readings	1. N.K. Vishnoi, Advanced Practical Organic Chemistry – 3 rd Ed,		
	Vikas Publishing, 2009.		
	2. A. I. Vogel, Elementary practical organic chemistry: Part 1-		
	Small scale preparations, 2 nd Edition, Pearson, 2010.		
	3. A. I. Vogel, Elementary Practical Organic Chemistry: Part 2 -		
	Qualitative Organic Analysis, 2 nd Edition, Pearson, 2010.		
	4. A. I. Vogel, Elementary practical organic chemistry: Part 3-		
	Quantitative organic analysis, 2 nd Edition, Pearson, 2010.		

	G Mann and B C Saunders, Practical organic chemistry, 4 th	
E	d., Pearson, 2009.	
6. /	A.R. Tatchell, B.S. Furnis, A.J. Hannaford, P.W.G. Smith,	
	Vogel's Textbook of Practical Organic Chemistry, 5 th Ed.,	
	ongman, 1989.	
7.	John C. Gilbert, Stephen F. Martin, Experimental Organic	
	Chemistry: A Miniscale and Microscale Approach,5 th Ed.,	
	Brooks Cole, 2011.	
8.	Kenneth L. Williamson, Katherine M. Masters, Macroscale	
	and Microscale Organic Experiments, 6th Ed., Brooks Cole,	
	2011.	
9.	Donald L. Pavia, Gary M. Lampman, George S. Kriz, Randall	
	G. Engel, Microscale and Macroscale Techniques in the	
	Organic Laboratory, Thomson, 2002.	
10.	B. N. Campbell, Jr., M. M. Ali, Organic Chemistry	
	Experiments, Brooks Cole, 1994.	
11.	D. L. Pavia, G. M. Lampman and G. S. Kriz, Introduction to	
	Organic Laboratory Techniques: A Contemporary Approach,	
	W. B. Saunders, 1976.	
12.	J W. Lehman, Operational Organic Chemistry - A laboratory	
	course, 4 th Ed, Allyn and Bacon,2008.	
13.	Koichi Tanaka, Solvent Free Organic Synthesis, WILEY - VCH,	
	2003.	
14.	D. W. Mayo, R. M. Pike and S. S. Butcher, Microscale organic	
	laboratory, John Wiley	
	and Sons, N. York, 1989	
15.	H. Dupont Durst, George W. Gokel, Experimental organic	
	chemistry, McGraw-Hill, 1987.	