Programme: M. Sc. Part-I (Chemistry)

Course Code: OCO-401

Title of the Course: Synthetic Organic Chemistry I

Number of Credits: 03 Effective from AY: 2018-19

-		
Prerequisites	Should have studied the courses / topics in Organic Chemistry at F Y B Sc,	
for the course:	S Y B Sc and T Y B Sc levels as well as the course CHOC-401 so as to	
	have basic knowledge of organic nomenclature and basic principles.	
Course	1. Introduction to concepts of functional groups and their interconversion	
Objectives:	2. Learning mechanistic concepts of carbon-carbon bond making by	
g	nucleophilic addition to carbonyl group	
	3. Learning mechanistic aspects of various oxidation & reductionprocesses	
	used in organic syntheses.	
Course	1. Students should be in a position to choose appropriate oxidizing agent	
Outcomes:	for oxidation of a particular functional group.	
	2. Students should be in a position to choose appropriate reducing agent for	
	reduction of a particular functional group.	
	3. Students shall be in a position to understand/propose plausible	
	mechanism of organic reactions.	
	4. Student should be able to choose appropriate nucleophilic addition	
	reaction for making carbon-carbon bond.	
	reaction for making curbon curbon bond.	
Content:	1. Oxidation reactions:	11
Content:		
	Oxidation of organic compounds using chromium (PCC, PDC) and	hrs
	manganese compounds, Oppenauer oxidation, Swern oxidation,	
	ozonolysis. Other methods of oxidation such as selenium dioxide,	
	Pb(OAc) ₄ , HIO ₄ , peracids, peroxides, OsO ₄ ,RuO ₄ , DMSO (Swern) sodium	
	bromated / CAN & NaOCl, DDQ, Prevost's reagent and Woodward	
	Conditions;	
	Catalytic oxidation over Pt, Photosensitised oxidation of alkenes, oxidation	
	with molecular oxygen, aromatization, silver based reagents.	
	2.Reduction reactions:	9 hrs
	Reduction of organic compounds using hydride-transfer reagents and	
	related reactions: MPV reduction, NaBH ₄ , Trialkylborohydrides, LAH	
	& lithium hydridoalkoxyaluminates, mixed LAH-AlCl ₃ reagents,	
	DIBAL and reduction with borane and dialkylboranes, Enzymatic	
	reduction involving liver alcohol dehydrogenase/NADH & Bakers' yeast,	
	catalytic hydrogenation, Dissolving metal reductions including acyloin	
	condensation, Clemmensen reduction and Birch reduction, Other methods	
	of reduction: Wolff-Kishner, Raney Ni desulphurisation, di-imide.	
	3.Halogenation:	5 hrs
		JIIIS
	Formation of Carbon Halogen bonds: Substitution in saturated compounds,	
	alcohols, carbonyl compounds, substitution at allylic and benzylic	
	compounds, bromodecarboxylation (Hunsdiecker reaction), Finkelstein	
	reaction, iodolactonisation.	

	4. Esterifiction, amide preparation and hydrolysis: (study of different mechanisms and reagents)	6 hrs
	5. Name reactions: Knoevenegel Reaction, Claisen, Darzen, Stobbe, Perkin, Aldol, Benzoin, Pechmann condensation.	5 hrs
Pedagogy:	Mainly Lectures & tutorials. Seminars / assignments / presentations / self-study or a combination of some of these could also be used to some extent.	
References/	1. H. O. House, <i>Modern Synthetic Reactions</i> , 2 nd Ed., W. A. Benjamin,	
Readings	Benjamin-Cummings Publishing Co., 1972.	
	2. W. Caruthers, <i>Modern Methods of Organic Synthesis</i> , 4 th Ed.,Cambridge University Press, 2004.	
	3. M. B. Smith, Jerry March, <i>Advanced Organic Chemistry- Reaction</i> , <i>Mechanism and Structure</i> , 6 Ed, Wiley, 2006.	
	4. F.A. Carey & R.J. Sundberg, <i>Advanced Organic Chemistry</i> (Part A & B) 5 th Ed., Springer India Private Limited, 2007.	
	5. P Sykes, <i>A guidebook to mechanisms in organic chemistry</i> , 6 th Ed., Pearson Edu., 1996.	
	6. Clayden, Greeves, Warren and Wothers, <i>Organic Chemistry</i> , 2 nd Ed., Oxford University Press, 2002.	
	7. E.S. Gould, <i>Mechanism and structure in Organic Chemistry</i> , Holt, Reinhart and Winston 1965.	
	8. F. A. Carey, R. M. Giuliano, <i>Organic Chemistry</i> , 8 th Ed., McGraw-Hill, 2010.	
	9. S.H. Pine, <i>Organic Chemistry</i> , 5th Ed, McGraw-Hill International Edn. McGraw-Hill, 1980.	