Programme: M. Sc. (Chemistry, Part-II)

 Course Code: OCC-502

 Title of the Course: Reaction Mechanisms, Stereochemistry and Asymmetric Synthesis

 Number of Credits: 3

 Effective from AY: 2019-20

Prerequisites for the	Should have studied the topics on Reaction Mechanisms,	
course:	stereochemistry at T Y B Sc (Chemistry) and M. Sc. part-I	
	(Chemistry) levels.	
Course Objective:	 Introduction to important principles of stereochemistry such as Baldwin's rules. 	
	2. Understand the importance of chirality in organic syntheses.	
	3. Learn about non-catalytic asymmetric synthesis methods in the classical chemistry involving alkenes and carbonyl	
	compounds.	
	4. Analyse and understand mechanistic aspects for	
	fundamental reactions studied at TYBSc/ MSc Part I levels.	
Course Outcome	1. Students should be in position to understand the	
Course Outcome	importance of asymmetric synthesis in organic reactions.	
	2. Students should be in position to understand to apply	
	various principles of stereochemistry and understand the	
	mechanistic aspects of fundamental reactions.	
Content:	I. Reaction Mechanisms-	
<u>content.</u>	1. Intramolecular Reactions	02 hours
	(Baldwin's Rules)	02 110013
	2. Molecular rearrangements and their synthetic applications	07 hours
	2.1 Unifying principles and mechanisms of rearrangements	07 110013
	taking place at an electron deficient and electron rich	
	substrates.	
	2.2 Rearrangements taking place at carbon:	
	Arndt Eistert, Wagner Meerwein, benzil-benzilic acid,	
	Pinacol, semipinacol, Tiffeneau Demjanov, dienone phenol,	
	Wittig, Favorskii, Stevens, Wolff, Baker-Venkatraman	
	rearrangement, Barton decarboxylation, Pummerer	
	rearrangement.	
	2.3 Rearrangements at nitrogen:	
	Hofmann, Curtius, Lossen, Schmidt, Beckmann, Neber,	
	Stieglitz rearrangement.	
	2.4 Rearrangements at oxygen:	
	Payne (including aza and thia Payne) rearrangement,	
	hydroperoxide rearrangement, Criegee rearrangement.	
	2.5 Aromatic rearrangements:	
	Benzidine, Fries, Von Richter, Sommelet-Hauser, Smile's,	
	Jacobsen.	
	Rearrangement on aniline derivatives- Bamberger	
	rearrangement, Fischer-Hepp, Orton, Hofmann-Martius,	

	Reilly-Hickinbottom, rearrangements of N-arylazoanilines,	
	Phenylnitramines, Phenylsulfamines.	
	Rearrangements involving fragmentations: Eschenmoser	
	fragmentation.	
	ereochemistry	
	Stereoselctivity in cyclic compounds	8 hours
	(1) Introduction	
	(2) Stereochemical control in six membered rings	
	(3) Reactions on small rings	
	(4) Regiochemical control in cyclohexene epoxides	
	(5) Stereoselectivity in bicyclic compounds	
1.2	Conformations stability and reactivity of fund ving	
	Conformations, stability and reactivity of fused ring pounds	
	1 Fused bicyclic systems with small and medium rings:	
	(1) Bicyclo [4.4.0] decanes (cis- and trans-decalins)	
	(2) cis- and trans- decalones and decalols	
	(3) Octahydronaphthalins (octalins)	
	(4) Bicyclo [4.3.0] nonane (cis- and trans-hydrindanes)	
1.3	Fused polycyclic systems	
	1) Perhydrophenanthrenes	
	2) Perhydroanthracenes	
-	3)Perhydrocyclopentenophenanthrene system (steroids,	
	riterpenoids and hormones). Conformations and reactivity	
	owards esterification, hydrolysis, chromium trioxide	
	xidation, ionic additions (of X_2) to double bonds, formation	
	nd opening of epoxide ring, epoxidation by peroxy acids.	
	Spirocyclic compounds	
	Reactions with cyclic intermediates or cyclic transition states	
1.5	Reactions with cyclic intermediates of cyclic fransition states	
2 0.	onformation of bridged ring compounds	4 hours
	Bicyclo [2.2.1] heptane (norbornane)	1110010
	1) Geometry and topic relationship of hydrogens.	
	2) Solvolysis of bicyclo[2.2.1]heptyl systems, formation,	
	stability and reactivity of norbornylcation.	
	(3) Relative stability and the rate of formation of <i>endo</i> and	
	-	
	<i>exo</i> isomers in both bornane and norbornane systems.	
	Bicyclo [2.2.2] octane system	
	(1) Geometry and topic relationship of hydrogens	
	(2) Solvolysis of bicyclo[2.2.2]octyl system.	
2.3	Other bridged ring systems: starting from	
	bicyclo[1.1.1]pentane to bicyclo[3.3.3] undecane	
2.4	Bicyclo system with heteroatom: the relative stabilities of	

	<u> </u>	I
	tropine, pseudotropine and benzoyl derivatives of	
	norpseudotropine.	
	3. Dynamic Stereochemistry: Stereoselective Reactions	6 hours
	3.1 Stereoselectivity: classification, terminology and principle.	0 11001 5
	Selectivity in chemistry– substrate and product selectivity.	
	3.2 Stereoselective reaction of cyclic compounds: Introduction,	
	reactions of four, five and six-membered rings.	
	Conformational control in the formation of six-membered	
	ring. 3.3 Diastereoselectivity: Introduction, making single	
	, , , , , , , , , , , , , , , , , , ,	
	diastereoisomers using stereospecific reactions of alkenes.	
	3.4 1,2-Addition to carbonyl compounds: Predicting various addition outcomes using different predictive models such	
	°	
	as, Cram Chelate, Cornforth, Felkin-Anh. Specific reactions: allylation/crotylation by Brown, Roush, BINOL catalyzed.	
	3.5 Stereoselective reaction of acyclic alkenes: The Houk model	
	5.5 Stereoselective reaction of acyclic dikenes. The nouk model	
	4. Asymmetric synthesis	6 hours
	4.1 Chiral pool (chiron approach)	0 11001 3
	4.2 Chiral auxiliary approach	
	Oxazolidinone & norephedrine-derived chiral auxiliary	
	controlled Diels-Alder reaction and alkylation of chiral	
	enolates and aldol reaction, Alkyation using SAMP and	
	RAMP	
	4.3 Chiral Reagents (Use of (-)-sparteine	
	4.4 Asymmetric catalysis	
	CBS catalyst, Ruthenium catalyzed chiral reductions of	
	ketones, Catalytic asymmetric hydrogenation of alkenes,	
	Asymmetric epoxidation (Sharpless and Jacobson),	
	Sharpless asymmetric dihydroxylation reaction	
	Organocatalysed aldol reaction (Use of proline)	
	5. Stereoisomerism due to axial chirality, planar chirality and	3 hours
	helicity.	
	5.1 Stereochemistry and configurational (R/S) nomenclature in	
	appropriately substituted allenes, alkylidenecycloalkenes,	
	spiranes, adamantoids, biaryls, trans-cycloalkenes,	
	cyclophanes and ansa compounds.	
	5.2 Atropisomerism in biphenyls and bridged biphenyls.	
Pedagogy:	Lectures/ tutorials/ seminars/ term papers/assignments/	
	presentations/ self-study/ Case Studies etc. or a combination of	
	some of these. Sessions shall be interactive in nature to enable	
References/Readings	peer group learning. 1. M. B. Smith & Jerry March, Advanced Organic Chemistry-	
	III WI R Smith & Jorry March Advanced Arganic ("hemistry")	

Reaction, Mechanism and Structure, Wiley, 2006, 6th Ed.
2. D. Nasipuri, Stereochemistry of Organic compounds, Principles
and applications, New Age International Pvt. Ltd., 1994, 2 nd
Ed.
3. E.L. Eliel, Stereochemistry of Carbon Compound, Tata Mc-
Graw Hill, 1975.
4. W. Caruthers & I. Colddham, Modern Methods of Organic
Synthesis, Cambridge University Press, 2016, 4 th Ed.
5. J. Clayden, N. Greeves and S. Warren, Oxford, 2016.
6. I. L. Finar, Stereochemistry and the Chemistry of Natural
Products, ELBS, Vol. 2, Longman Edn, 1975. 5th Ed.
7. E.S. Gould, Mechanism and Structure in Organic Chemistry,
Holt, Reinhart and Winston, 1965.
8. F. A. Carey & R. J. Sundberg, Advanced Organic Chemistry:
Part A and B, Springer India Private Limited, 2007, 5 th Ed.
9. R. O. C. Norman & J. M. Coxon, Principles of Organic
Syntheses, CRC Press Inc, 1993, 3 rd Ed.
10. V.M. Potapov & A. Beknazarov, Stereochemistry, Central
Books Ltd., 1980.
11. D. G Morris, <i>Stereochemistry</i> , Wiley-RSC, 2002, 1 st Ed.
12. Clayden, Greeves, Warren & Wothers, Organic Chemistry,
Oxford University Press, 2002, 2 nd Ed.
13. M. Nogradi, Stereoselective Synthesis, VCH Publishers, Inc.,
1994, Revised and Enlarged Ed.