MT203 Applied Operations Research

Prerequisites: CS101, Standard XII Mathematics or equivalent.	
Course Contents: Decision making in Operations Research	(5%)
Linear Programming (LP): LP formulations, LP model and resource allocation	(10%)
LP: Algebraic solutions, standard LP model, simplex method, special cases in sim	plex method (10%)
LP: duality and sensitivity analysis: Definition of dual, primal-dual relationships, duality, dual simplex method, sensitivity analysis	economic interpretation of (10%)
Transportation Model: solution of the transportation model, assignment model	(10%)
Networks: network minimization, shortest route problem, maximal flow problem LP representation of networks	n, (10%)
Revised simplex method for LPP, bounded variables, decomposition algorithm	(10%)
Integer programming: cutting plane algorithm, branch and bound method.	(10%)
Dynamic programming: Problem of dimensionality, solution of linear programs by	y dynamic programming (10%)
Project scheduling by PERT-CPM: critical path calculations, construction of time probability and cost considerations, project control	chart and resource leveling, (10%)
Non-Linear programming algorithms	(5%)

Main Reading

- 1. Hamdy A.Taha, Operations Research: An Introduction, Pearson Education
- 2. Pradeep Prabhakar Pai, Operations Research: Principles and practice, OXFORD University Press
- 3. Frederick S.Hillier and Mark S.Hillier, Introduction to management science: A modeling and case studies approach with spreadsheets, Tata McGraw-Hill.
- 4. Frederick S Hillier, and Gerald J. Lieberman, Introduction to Operations Research, McGraw Hill.

MT204 Linear Algebra and Applications

Prerequisites: Standard XII mathematics or equivalent.

Course Contents:

Linear Equations in Linear Algebra: Systems of linear equations, row reduction and echelon forms, Vector	
equations, matrix equation, solution sets of linear systems, linear independence, Matrix of linear transformat	ion.
(15%)	

Matrix Algebra: characteristics of invertible matric	es, Partitioned matrices	, matrix factorizations,	application to
computer graphics, dimension and rank.		(15%)	

Determinants: Properties, Cramer's rule, volume and linear transformations. (10%)

Vector Spaces: vector spaces and subspaces, linear transformations, Bases, coordinate systems, Dimension of a vector space, rank, change of bases (15%)

Eigenvalues and eigenvectors: Characteristics equation, diagonalization, eigen vectors and linear transformations, discrete dynamical systems (15%)

Orthogonality: inner product, length, and orthogonality, orthogonal sets, orthogonal projections, Gram-Schmidt process, inner product spaces (15%)

Symmetric matrices and quadratic forms: diagonalization of symmetric matrices, quadratic forms, constrained optimization, singular value decomposition, application to image processing and statistics. (15%)

Main Reading

- 1. David C. Lay, Linear Algebra and its Applications, Pearson.
- 2. Steven J. Leon, Linear Algebra with Applications 8th Edition, Pearson.

Supplementary Reading

- 1. ATLAST Computer Exercises for Linear Algebra, 2nd edition by Steven J. Leon, Eugene Herman, and Richard Faulkenberry.
- 2. Student Study Guide, 8E by Steven J. Leon.
- 3. Visualizing Linear Algebra using Maple by Sandra Keith
- 4. Understanding Linear Algebra using MATLAB by Irwin and Margaret Kleinfeld
- 5. Linear Algebra Labs with MATLAB, 3rd ed. by David R. Hill and David E. Zitarelli

PL205 Data and File Structures Lab

Prerequisites: PL105

List of Sample Lab Assignments :

ADT Specifications and Implementation of following basic data structures -

- 1. String Data Type
- 2. Sparse matrix
- 3. Polynomial
- 4. Singly Linked Linear Lists
- 5. Singly Linked Circular Lists
- 6. Doubly Linked Linear Lists
- 7. Doubly Linked Circular Lists
- 8. Linked Lists with Header Nodes
- 9. Generic Linked Lists
- 10. Stacks
- 11. Queues

ADT Specifications and Implementation of following non-linear data structures

- 12. Graphs
- 13. Binary Trees
- 14. Binary Search Trees
- 15. AVL Trees
- 16. Threaded Binary Trees
- 17. B-Trees and its variants
- 18. Tries

Applications of Stacks and Queues

- 19. Convert infix expression into postfix expression.
- 20. Evaluate postfix expression
- 21. Traversing a binary tree inorder, preorder, postorder