MMC 201-P INDUSTRIAL MICROBIOLOGY [P]

Practical Course Credit: 1 Contact Hours: 30

- 1. Fermentation kinetics growth of *E.coli/S.cerevisiae* and determination of μ_{max}, Ks, Yx/s, m.
- 2. Rheology of substrate solutions.
- 3. Designing of fermentor stirred tank reactor.
- 4. Immobilization using alginate.
- 5. Baker's yeast ISI quality assurance.
- 6. Demonstration of AAS, HPLC, FTIR, MS/MS.

References (Composite list for theory and practicals):

- 1. Demain, A. L., Davies, J. E. and Atlas, R. M. Manual of Industrial Microbiology and Biotechnology, ASM Press.
- 2. Vogel, H. C. and Tadaro, C. M., Fermentation and Biochemical Engineering Handbook: Principles, Process Design and Equipment, William Andrew Publisher.
- 3. Atkinson, B. and Mavituna, F., Biochemical Engineering and Biotechnology Handbook, Stockton Press.
- 4. Flickinger, M. C. and Drew S. W., The Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation, Volumes 1 5, John Wiley Publisher.
- 5. Stanbury, P. F., Whitaker, A. and Hall, S.J., Principles of Fermentation Technology, Butterworth-Heinemann Publishers.

MMC 201-T INDUSTRIAL MICROBIOLOGY [T]
Theory Course Credits: 3
Contact Hours: 45

1 1.1	History of Industrial Microbiology, fermentation processes, descriptive layout and	(C
	components of fermentation process for extracellular and intracellular microbial	
	<mark>products.</mark>	
<mark>1.2</mark>	Microbial growth kinetics:	
1.2	Batch kinetics – Monod's model (single substrate), deviations from Monod's model,	((
	dual substrates – sequential utilization, multiple substrates – simultaneous utilization,	,,
	substrate inhibition, product synthesis (primary and secondary metabolite), toxic	
	inhibition, death constant.	
	Microbial growth kinetics:	
1.3	Fed-batch kinetics – fixed volume, variable volume and cyclic fed-batch, applications	((
	and examples of fed-batch systems.	
	Continuous cultivation system – relationship between specific growth rate (μ) and	
	dilution rate, multistage systems, feedback systems (internal and external feedback),	
	applications and examples of continuous cultivation system; comparison between	
	various cultivation systems.	
2		
<mark>2</mark> 2.1	Optimization and modeling of fermentation process – single variable design,	((
	multivariate screening designs, critical factor analysis, optimization designs for two or	
	more factor, singlet method; Metabolic and flux control analysis.	
2.2 2.3	Bioreactor design and operation: classification of reactors; Ideal mixed v/s plug flow	(
	reactor; designing parameters for reactors (stirred tank reactor, airlift reactor, plug	
	flow reactor), rheology of fermentation broth.	
	Bioreactor design and operation: gas-liquid mass transfer, heat transfer, analysis of	((
	dimension less parameters and their application (aeration number, power number and	(I
	Reynold's number; Scale-up of bioprocesses: parameters used in scale-up and	
	problems associated with scale-up.	
8 8.1		
3.1	Solid substrate fermentation (SSF): Principles and application; Surface fermentation	0
	Comparison between SSF, Surface fermentation and SmF.	
	Problems in fermentation process and handling (foam, contamination, strain	
	degeneration, etc), Immobilized enzymes and cell systems.	
<mark>3.2</mark>	Fermentation monitor and control: Common measurement and control systems (speed,	C
	temperature, gas, pH, Dissolved oxygen, foam, redox, air flow, weight, pressure,	
	biomass), On-line and off-line analysis, Digital controllers, control algorithm, flow	
	charting, incubation control, advanced fermentation control and computer-based	
	automation of process.	_
<mark>3.3</mark>	Industrial scale Down-stream processing and product recovery: principle and general	O
	description of instrumentation, Recovery of particulates (cells and solid particles),	
	recovery of intracellular products, primary isolation (extraction, sorption),	
	precipitation, industrial processes for chromatography and fixed bed adsorption,	
	membrane separations; Type Processes - Antibiotic (Penicillin including semisynthetic).	