Programme: M. Sc. Part-II (Inorganic Chemistry)

Course Code: ICO-502

Title of the Course: Catalysis: The Basic chemical concepts

Number of Credits: 03 Effective from AY: 2019-20

Droroguisitos	The students with Chemistry back ground are eligible for this course.	No. of
Prerequisites for the course:	The students with chemistry back ground are engible for this course.	lectures
Tor the course.		iectures
Course	1. To understand fundamentals concepts of chemical reactions over	
Objectives:	the catalysts.	
1	2. To understand energy saving and making green processes in	
	chemical reactions.	
	3. To understand fundamentals concepts of chemical reactions for	
	developing higher productivity, mechanisms and viability.	
	4. To provide knowledge on applications of heterogeneous,	
	homogenous and other catalytic processes.	
	nomogenous and other catalytic processes.	
Course	1. The students will be able to understand the green chemical	
Outcomes:	processes.	
Julionies.	2. They will be well equipped with the knowledge of catalytic	
	reactions.	
	3. They will be in position to understand the reaction mechanism	
	process. 4. The concents of catalytic reactions will be cleared to them.	
	4. The concepts of catalytic reactions will be cleared to them.	
	5. They will know the applications of catalyst compounds in chemical	
	reactions and industries.	
2		0.1
Content:	1. Origin and development of catalysis;	2 hr
	Difference between heterogeneous, homogeneous, auto and	
	photocatalysis, Importance of heterogeneous and homogeneous	
	catalysts in chemical reactions.	
	2. Heterogeneous Catalysis:	17 hr
	i. Adsorptions: Physical and chemical adsorption, dissociative	.,
	adsorptions, simple adsorptions isotherm, Langmuir adsorption	
	and the BET adsorption isotherm.	
	ii. Types of Catalysts; Preparations of the Catalysts, nano-materials,	
	significance of zeolites and supported catalysts.	
	iii. Characterization of solid catalysts: Surface area, structure and	
	surface morphology, X-ray diffraction, SEM, TEM, X-ray	
	absorption spectroscopy, XPS and Auger spectroscopy to surface	
	studies.	
	iv. Activity and life of the catalysts, active centers, promoters and	
	poisons, catalyst deactivations.	
	v. Heterogeneous reactions: Thermodynamic consideration in	
	surface reactions, ammonia synthesis, oxidation reduction	
	reactions (selected examples), mechanism of catalytic reactions,	
	method of finding rate of the reactions and the rate determining	
	steps.	
	vi. Theories of Catalysis: Boundary layer theory, Catalysis by	
	semiconductors, Wolkenstein theory, Balanding's approach,	
İ	schileonuuctors, workenstein theory, balanuings approach,	

	electronic factors is catalysis by metals. 3. Homogeneous Catalysis: Intermediate stages in homogenous Catalysis, energy profile diagram, general scheme for calculating kinetics of reactions, decomposition of hydrogen peroxide, acid-base catalysis, hydrogenation, Mosanto acetic acid, Carboxylation reaction and Wacker reaction.	7 hr
	4. Introduction to followings: Photocatalysis, catalytic polymerizations, phase transfer catalysis and biocatalysis with suitable examples.	6 hr
	5. Catalysts for energy and environmental: Catalytic gasification, steam reforming, fuel cells and auto-industrial emission control.	4 hr
Pedagogy	Mainly lectures / tutorials / assignments /self-study or a combination of some of these could also be used to some extent.	
Text books / Reference books	 P. H. Emmett, Catalysis, Vol I, Reinhold, New York, 1955. A.V. Salker, Catalysis: Principles and Basic Concepts, Scientific International, 2019. D. K. Chakraborty, Adsorption and Catalysis by Solids, New Age Intl. (P) Ltd., 2008. J. M. Thomas & W.J. Thomas, Heterogeneous Catalysis, VCH publication, 1997. A. Clark, The Theory of Adsorption and Catalysis, Academic Press, 1970. E. R. Rideal, Concept in Catalysis, Academic Press, 1968. G. M. Panchenov & V. P. Lebedev, Chemical Kinetics and Catalysis, Mir publication, 1976. S. J. Thomson & G. Webb, Heterogeneous Catalysis, Oliver and Boyd Publications, 1968. R. A. Van Santen & J. W. Niemantsvedict, Chemical Kinetics and Catalysis, Plenum Press, New York, 1995. 	