Programme: M. Sc. Part-II (Inorganic Chemistry)

Course Code: ICO-501

Title of the Course: Bioinorganic Chemistry

Number	of	Credit	ts:	(

Number of Credi	Number of Credits: 03 Effective from AY:	
Prerequisites	The students who have done MSc-I Chemistry core courses are eligible	No. of
for the course:	to attend	lectures
Course	1. To introduce, describe and highlight the role of inorganic elements	
Objectives:	especially metal ions in biology.	
	2. To describe the role of small molecular weight model compounds.	
Course	In addition to knowing the essential elements in biology the students	
Outcomes:	will be able to understand the role played by metal ions in vital	
	processes like i) oxygen storage and transport and ii) electron transfer.	
Course	1. Essential elements in biology, distribution of elements in	6 hr
Content:	biosphere, bio-availability, bio-stability, building blocks of the	
	biosphere; carbohydrates, nucleic acids and proteins. Biological	
	importance of water, and brief review of the chemistry of	
	biopolymers. Metallobiomolecules: classification of	
	metallobiomolecules, metalloproteins (enzymes), metal activated	
	proteins (enzymes), metal functions in metalloproteins, Principles	
	of coordination chemistry related to bioinorganic research,	
	physical methods in bioinorganic chemistry	
		<i>(</i>)
	2. Introduction, biological importance of the alkali and the alkaline	
	earth cations, Cation transport through membranes (ion pumps).	
	Photosynthesis, Hill reaction, Chlorin macrocycle and chlorophyll,	
	Absorption of light by chlorophyli, role of metals in	
	photosynthesis, in vitro photosynthesis.	<i>(</i>)
	3. Non redox metalloenzymes, zinc metalloenzymes like	6 hr
	carboxypeptidase, carbonic anhydrase and alcohol	
	dehydrogenase, Bio-functions of zinc enzymes, active site	
	structure and model complexes.	
	A Dischemistry of a few transition metals viz To Mo. Cy and Ni	
	4. Diochemistry of a few transition metals viz. Fe, ivio, cu and ivi,	
	(Happen carriers and oxygen italisport proteins, itori porphyrins	
	Synthetic models for evygen binding backprotions - evtechrome	
	(c) catalase perovidase and superovide dismutase blue conner	
	c, catalase peroxidase, and superoxide distribution and iron sulful	
	proteins, vitamin b ₁₂ coenzymes, fill over fixation and fibitrogen	
	complexes iron-sulfur proteins synthetic analogues for Eq.S	6 hr
	proteins core extrusion reactions	6 hr
	proteins, נטופ פאנו מאוטורו פמננוטוג.	511

	5. Metal transport and storage: A brief review of iron transport.	
	6. Synthesis of simple ligands or isolation of S-containing amino acid	
	or extraction of chlorophyll from green leaves (this will involve	
	both collection of synthetic procedures from library, term paper	
	presentation / discussion)	
Pedagogy	Mainly lectures / tutorials / assignments /group discussion / self-study or a combination of some of these could also be used to some extent.	
Text books / Reference books:		
Reference	1. S. J. Lippard & J. M. Berg, Principles of Bioinorganic chemistry,	
books	Panima Publishing Corporation	
	2. B. I. Britini, H. B. Gray, S. J. Lippard & J. S. Valentine, Bioiorganic	
	chemistry, University Science books, Mill Valey, CA, 1994.	
	3. D. E. Fenton, <i>Biocoordination Chemistry</i> , Oxford Chemistry Printers,	
	25 Oxford University Press, 1995	
	4. E. E. Conn, P.K. Stumpf, G. Bruening & R. H. Doi, <i>Outlines of</i>	
	Bioinorganic Chemistry, Wiley Eastern, New Delhi, 1983, 5" Ed.	
	India, 2007, 3 rd Ed. (Chapter 31)	
	 M Weller, T Overton, J Rourke & F Armstrong Inorganic Chemistry, Oxford University Press, 2018, Int. Ed. (Chapter 25) 	
	 P Atkins, T Overton, J Rourke, M Weller & F Armstrong, <i>Shriver & Atkins' Inorganic Chemistry</i>, Oxford University Press, 2010, 5th Ed. (Chapter 27) 	
	8. J. E. Huheey, E.A. Keiter, R.L. Keiter, Inorganic Chemistry: Principles	
	of Structure and Reactivity, Addison Wesley Publishing, 5 th Ed. (Chapter 19)	
	9. R. W. Hay, Bioinorganic chemistry, Ellis Horwood Chichester, 1984	
	 M.N. Hughes, <i>The Inorganic Chemistry of Biological processes</i>, Wiley (Interscience) New York, 1984, 2nd Ed. 	