8. A. G. Sykes, Advances in Inorganic Chemistry, Academic	
Press Ltd., UK Ed. 1991.	
9. H. J. Arnikar, Essentials of Nuclear Chemistry, New Age Intl.	
Publishers, 2011, 4 th Revised Ed.	
10. G. Friedlander, J. W. Kennedy, E. S. Macias, J. M. Miller,	
Nuclear & Radiochemistry, John Willey & Sons, New York,	
1981, 3 rd Ed.	

Programme: M. Sc. Part-II Inorganic Chemistry Course Code: ICC-505

Title of the Course: Experiments in Inorganic Chemistry

estimation of chloride

estimation of cobalt

and estimation of chromium

Number of Cre	Number of Credits: 03 Effective from AY: 2019-2		
Prerequisites for the course:	Students should have studied the courses ICC-401, ICC-402 and ICO-401 ta M. ScI level	No. of lectures	
Course Objectives:	 To introduce to practical knowledge in Inorganic Chemistry. To learn techniques of crystallization of ligands and synthesis of coordination compounds To learn characterization of compounds using different instruments To provide experience of synthesis and characterization of materials To introduce analysis of ores for metal content 		
Course Outcomes:	 Students will be in a position to understand general aspects involved in purification of ligands and synthesis of coordination of compounds Students will be able to understand the methods for characterization of coordination compounds. Students will be in a position to understand the solid state material synthesis and characterization. Students will be able to separate metal ions by ion exchange chromatography. They will also gain knowledge about the analysis of ores and alloys 		
Content:	 EXPERIMENTS IN INORGANIC CHEMISTRY Total sixteen experiments to be performed from the following. Group – 1: Experiments in coordination chemistry: Ligand and complex synthesis, metal analysis (Minimum 3) 1) Purification (distillation / recrystallization) of ligands like acacH, en, carboxylic acids etc) 2) Preparation of manganic tris(acetylacetonate) and estimation of managanese 3) Preparation of tris(thiourea) copper(I) sulfate and estimation of copper 4) Preparation of isomers; <i>cis</i> & trans dichloro-(ethylenediamine)- cobalt(III) chloride and estimation of cobalt 5) Preparation and resolution of tris(ethylenediamine)cobalt(III) ion and 	18	

6) Preparation of *cis* and *trans*- potassium dioxalatodiaquo-chromate(III)

7) Preparation of nitro and nitrito-penta aminecobalt(III)chlorides and

8) IR spectral characterization of free ligands and coordinated ligands

	 9) Single crystal structure analysis NOTE: In complex synthesis, the student is expected to recrystallize the product, record IR spectra and carry out metal analysis. Spectral analysis can be carried over. Group -2 Experiments in Solid State Chemistry (Minimum 3) 1) Preparation of spinel oxides by precursor method and estimation of metals in precursors and oxides, 2) Characterization of precursors by thermal analysis and infrared analysis 3) X-ray diffraction studies of oxides 4) Electrical characterization: i) Direct current electrical resistivity of semiconductor (Ge/Si) by Four Probe 4) Curie temperature determination of dielectric material (PZT) by measurement of dielectric constant v/s temperature 5) Measurement of magnetization parameter: Ms, Mr and Hc, 6) Determination of Curie temperature of magnetic oxides by A.C. susceptibility studies. 	18
	 Group - 3: Instrumental methods / spectral analysis / ion exchange (Minimum 3) A) Determination of stability constant of complex ions in solution 1) Fe(III) - thiocyanate compound B) Determination of instability constant of complex ions in solution 2) Determination of instability constant for the reaction between Ag⁺ and NH₃ 3) Determination of instability constant for the reaction between Ag⁺ and en 4) Determination of instability constant for the reaction between Cu²⁺ and NH₃ 5) Determination of instability constant for the reaction between Cu²⁺ and en 	18
	 C) Ion exchange chromatography 6) Separation of Mg²⁺ and Co²⁺/Zn²⁺ by anion exchange column 7) Separation of transition metal cations by anion exchange column Group – 4: Ore / Alloy/ commercial sample analysis (Minimum 3) 1) Analysis of Goan Iron ore: Hematite / magnetite 2) Analysis of Devardas alloy 3) Analysis of Solder (Pb and Sn) 4) Analysis of Calcite/ Dolomite 5) Analysis of Pyrolusite 6) Analysis of Nickel-Aluminium alloy 7) Analysis of Brass / Bronze 	18
Pedagogy	Pre-labs, practical / self-study or a combination of some of these could also be used to some extent.	

Reference	1. G. Brauer, Handbook of Preparative Inorganic chemistry, Vol. 1 & 2,	
Books	Academic Press New York, 1967, 2 nd Ed.	
	2. J. Bassett, R.C. Denny, G. H. Jeffery & J. Mandham, <i>Vogel's Text Book of Quantitative Inorganic Analysis</i> ELBS, 1985, 4 th Ed.	
	3. G. Marr & B. W. Rockett, <i>Practical Inorganic Chemistry</i> , Van Nostrnad	
	A G Pass & H Sutcliffe Practical Inorganic Chemistry Chapman and	
	Hall, 1985, 2 nd Ed.	
	5. J. D. Woolins, Inorganic Experiments, Wiley–VCH Verlag GmbH and Co,	
	2003.	