Programme: M. Sc. Part-II (Inorganic Chemistry) Course Code: ICC-504 Title of the Course: Selected topics in inorganic chemistry - I Number of Credits: 03

Effective from AY: 2019-20

Prerequisites for the course:	The students with MSc-I Chemistry are eligible for this course.	No. of lectures
Course Objectives:	 To gain knowledge in selected topics in inorganic chemistry. To learn s-block elements, selected compounds of d-block and f-block elements. To understand the basic electrochemical processes in inorganic compounds. To study the applications of inorganic compounds in selected areas. 	
Course Outcomes:	 Students will be able to gain knowledge regarding chemistry (abundance, preparation, properties) of s, d and f block elements. Students will be able to gain knowledge of fundamentals of inorganic electrochemistry and medicinal chemistry. 	
Content:	 1. S-block elements and their compounds 1.1 Hydrogen and hydrides: Electronic structure, position in periodic table, abundance, preparation, properties, isotopes, ortho and para hydrogen. Classification of hydrides, preparation & properties of hydrides; hydrogen ion, hydrogen bonding and its influence on properties. 1.3 Group 1 Elements: Introduction, abundance, extraction, physical and chemical properties, solubility and hydration, solutions of metal in liquid ammonia, complexes, crowns and cryptands, electrides, alkalides, difference between lithium and the other group 1 elements, diagonal relationship between Li and Mg. 1.4 Group 2 Elements 	10 hr
	 Introduction, abundance, extraction, physical and chemical properties, solutions of metal in liquid ammonia, complexes, anomalous behaviour of beryllium, difference between beryllium and the other group 2 elements, diagonal relationship between Be and AI, preparation and properties Grignard reagent. 2. Chemistry of d-block and f-block compounds 2.1 Polyoxometallates; 1.2 metal sulphides and sulfido compounds; 1.3 Nitrido & alkylidyne compounds; 1.4 Metal- 	6 hr
	metal bonded compounds and clusters; 1.5 coordination & organometallic compounds of lanthanides; 1.6 Electronic spectra of lanthanides & actinide compounds; 1.6 Brief chemistry of thorium, uranium, neptunium, plutonium &	

	americium.	4 hr
	 3. Fundamentals of Inorganic Electrochemistry Basic aspects of electrochemistry, electron transfer reactions at electrode surface, potential and electrochemical cells, voltammetric techniques, linear voltammetry, cyclic voltammetry; reversible, irreversible and quasi-reversible processes; applications of cyclic voltammetry with reference to ferrocenes, transition metal complexes. 4. Inorganic medicinal chemistry Anticancer agents: Platinum and Ruthenium complexes as anticancer drugs, Cancer chemotherapy, phototherapy, radiotherapy using borane compounds, Chelation therapy, Gadolinium and technetium complexes as MRI contrast agents, X-ray contrast agents, Anti-arthritis drugs, Anti- bacterial agents (Ag, Hg, Zn and boron compounds), Antiseptic and anti-biotic, Deodorants and anti-perspirants, Antiseptic and anti-biotic, Deodorants and anti-perspirants, Antiseptic and anti-biotic, Deodorants and anti-perspirants, Antiseptic and anti-biotic, Deodorants and anti-perspirants, Antiseptic and anti-biotic, Deodorants and anti-perspirants, Antiseptic and anti-biotic, Deodorants and anti-perspirants, Antiseptic and anti-biotic, Deodorants and anti-biotic, Deodorants and anti-biotic, Deodorants Antiseptic and Ant	8 hr 8 hr
	Anti-viral agents (influenza, herpes, hepatitis and HIV viruses), Li drugs. 5. Nuclear Chemistry Radioactivity, Decay processes and decay energy, half-life of radioactive elements, Nuclear fission and fusion processes, Nuclear reactor components and functions, Q values for nuclear reactions, Nuclear waste management, Radiation detection principles, Chemical separation techniques of radioactive elements, Radio-analytical techniques, Activation analysis.	8 11
Pedagogy	Mainly lectures / tutorials / assignments / self-study or a combination of some of these could also be used to some extent.	
Text / Reference Books	 P.W. Atkins, T.L. Overton, J.P. Rourke, M.T. Weller & F.A. Armstrong 2010, Shriver & Atkins' Inorganic Chemistry, Oxford University Press, 2010, 5th Ed. J.E. Huheey, E.A. Keiter & R.L. Keiter, Inorganic Chemistry: Principles of structure and reactivity, Pearson, 2014, 4th Ed. J. D. Lee, Concise Inorganic Chemistry, Blackwell Science Wiley, 2015, 5th Ed. (Reprint) F.A. Cotton, G. Wilkinson & P.L. Gaus, Basic Inorganic Chemistry, John Wiley 1995, 3rd Ed. F.A. Cotton & G. Wilkinson, Advanced Inorganic Chemistry, Wiley Eastern, New Delhi, 1984, 3rd Ed. (4th & 5th Ed. preferred) N. N. Greenwood & A. Earnshaw, Chemistry of the Elements, Pergamon Press, Exeter, Great Britain, 1984. D. T. Sawyer, A. Sobkowak, J. L. Roberts Jr., Electrochemistry for chemists, John Wiley, Inc., New York, 1995, 2nd Ed. 	

8. A. G. Sykes, Advances in Inorganic Chemistry, Academic	
Press Ltd., UK Ed. 1991.	
9. H. J. Arnikar, Essentials of Nuclear Chemistry, New Age Intl.	
Publishers, 2011, 4 th Revised Ed.	
10. G. Friedlander, J. W. Kennedy, E. S. Macias, J. M. Miller,	
Nuclear & Radiochemistry, John Willey & Sons, New York,	
1981, 3 rd Ed.	

Programme: M. Sc. Part-II Inorganic Chemistry Course Code: ICC-505

Title of the Course: Experiments in Inorganic Chemistry

estimation of chloride

estimation of cobalt

and estimation of chromium

	ise. Experiments in morganic chemistry			
Number of Credits: 03 Effective from AY: 201				
Prerequisites	Students should have studied the courses ICC-401, ICC-402 and ICO-401	No. of		
for the	ta M. ScI level	lectures		
course:				
Course	1. To introduce to practical knowledge in Inorganic Chemistry.			
Objectives:	2. To learn techniques of crystallization of ligands and synthesis of			
Objectives.	coordination compounds			
	3. To learn characterization of compounds using different instruments			
	4. To provide experience of synthesis and characterization of materials			
	5. To introduce analysis of ores for metal content			
Course	1. Students will be in a position to understand general aspects involved			
Outcomes:	in purification of ligands and synthesis of coordination of compounds			
	2. Students will be able to understand the methods for characterization			
	of coordination compounds.			
	3. Students will be in a position to understand the solid state material			
	synthesis and characterization.			
	4. Students will be able to separate metal ions by ion exchange			
	chromatography. They will also gain knowledge about the analysis of			
	ores and alloys			
Content:	EXPERIMENTS IN INORGANIC CHEMISTRY			
	Total sixteen experiments to be performed from the following.			
	Group – 1 : Experiments in coordination chemistry: Ligand and complex	18		
	synthesis, metal analysis (Minimum 3)			
	1) Purification (distillation / recrystallization) of ligands like acacH, en,			
	carboxylic acids etc)			
	2) Preparation of manganic tris(acetylacetonate) and estimation of			
	managanese			
	3) Preparation of tris(thiourea) copper(I) sulfate and estimation of			
	copper			
	4) Preparation of isomers; <i>cis</i> & trans dichloro-(ethylenediamine)-			
	cobalt(III) chloride and estimation of cobalt			
	5) Preparation and resolution of tris(ethylenediamine)cobalt(III) ion and			

6) Preparation of *cis* and *trans*- potassium dioxalatodiaquo-chromate(III)

7) Preparation of nitro and nitrito-penta aminecobalt(III)chlorides and

8) IR spectral characterization of free ligands and coordinated ligands