Programme: M. Sc. Part-II (Inorganic Chemistry) Course Code: ICC-503 Title of the Course: Group Theory & Spectroscopy

Number of Credi	dits: 03 Effective from AY: 2019-20	
Prerequisites for the course:	The students who have done ICC-401, ICC-402 and ICO-401 at MSc-I level are eligible for attend this course.	No. of lectures
Course Objectives:	 To train students to understand the concepts of molecular symmetry and group theory and their applications. To train the students to understand different spectroscopic techniques viz. magnetic resonance, vibrational & Mössbauer spectroscopy with emphasis on spectral interpretation. 	
Course	1. Students will be able to understand symmetry aspects of simple	
Outcomes:	molecules.	
	2. Students will get to know about applications of group theory and	
	concepts of molecular orbital theory.	
	3. Students will be able interpret IR, Raman, ESR, NMR, Mossbauer	
	spectra of simple molecules and determine molecular geometry	
Content:	1. Group Theory:	18 hr
	Basic definitions and theorems of group theory, Molecular symmetry	
	and the symmetry groups, symmetry elements and operations,	
	symmetry planes and reflections, inversion center, proper axes and	
	proper rotations, improper axis and improper rotations. Products of	
	symmetry operations, equivalent symmetry elements and equivalent	
	atoms, symmetry point groups, systematic symmetry classification of	
	molecules, classes of symmetry operations, representations of groups	
	the great orthogonality theorem some properties of matrices and	
	vectors reducible and irreducible representations properties of the	
	vectors, reducible and ineducible representations, properties of the	
	characters of representations, character tables, group theory and	
	quantum mechanics, wave functions as basis for irreducible	
	representations, direct product,	
	Symmetry aspects of molecular orbital theory, general principles, the	
	secular equation, the Huckel approximation, simple LCAO-MO theory	
	of homocyclic π systems. More general cases of LCAO-MO pi-bonding,	
	Molecular orbitals for the metal sandwich compounds.	
	2. Spectroscopic Methods:	18 hr
	Magnetic Resonance Spectroscopy, interaction between electron /	
	nuclear spin and magnetic field, Resonance condition, instrumental	
	requirements, presentation of NMR, ESR spectra, line widths of NMR	
	and ESR spectra, hyperfine coupling in isotropic systems (e.g. H atom,	
	metnyi radical etc.), anisotropic system, zero field splitting and	
	complexes. ESR spectra of some transition metal compounds Electron	

	delocalization,	
	NMR spectral interpretation of a few nuclei like ¹⁹ F, ²⁹ Si ³¹ P,	
	Mössbauer spectroscopy; Recoilless emission and absorption spectral line widths, Doppler shift, experimental arrangement of Mossbauer spectroscopy, chemical shift (isomer shift), quadrupole splitting, Magnetic hyperfine interaction. Discussion of selected Mossbauer nuclei (⁵⁷ Fe, ¹²⁹ I) Vibrational spectroscopy (IR & Raman) – recapitulation of basics, reduced mass, isotope effect, a few applications for determination of molecular geometry (See Ref. 7 and 8)	
Pedagogy	Mainly lectures / tutorials / assignments / self-study or a combination of some of these could also be used to some extent.	
Text books / Reference books	 F. A. Cotton, <i>Chemical Applications of Group theory</i>, John Wiley, 1990, 3rd Ed. R. L. Dutta & A. Syamal, <i>Elements of Magnetochemistry</i>, Affiliated East-West Press, New Delhi, 1993, 2nd Ed. C. N. Banwell & E. M. McCash, <i>Fundamentals of Molecular Spectroscopy</i>, Tata McGraw Hill, New Delhi, 1994, 4th Ed. (Chapter 7) G. Aruldhas, <i>Molecular structure and spectroscopy</i>, Prentice Hall of India, 2001. P Atkins, J De Paula & J Keeler, <i>Atkins' Physical Chemistry</i>, International Edition, Oxford University Press, 2018 (Focus 16) M Weller, T Overton, J Rourke & F Armstrong <i>Inorganic Chemistry</i> International Edition, Oxford University Press, 2018 (Chapter 8) P Atkins, T Overton, J Rourke, M Weller & F Armstrong, <i>Shriver & Atkins' Inorganic Chemistry</i> Oxford University Press, 2010, 5th Ed. (Chapter 8) E.A.V. Ebsworth, D.W.H. Rankin & S. Cradock, <i>Structural Methods in Inorganic Chemistry</i>, ELBS, 1988. 	