Programme: M. Sc. (Inorganic Chemistry) Course Code: ICC-502 Title of the Course: Materials Chemistry

Number of Credits: (D3 Effective from AY: 2019-2	
Prerequisites for the course:	Students should have studied the courses in Inorganic Chemistry at F Y B Sc, S Y B Sc, T Y B Sc and ICC-401 course at M.Sc. Part-I Chemistry so as to have basic knowledge of Materials Chemistry	No. of Hours
Course Objective:	To provide basic and advanced knowledge about solid state chemistry	
Course Outcome	This course will give sufficient information about the preparation of different types of materials, their structures, reactivity and properties.	
Content:	1. Introduction to Materials chemistry	1 hr
	2. Structure and bonding in solid materials: Crystal lattice; unit cell; Miller indices and planes; X-ray diffraction method; metallic, covalent and ionic solids; structural classification of binary and tertiary compounds.	4 hr
	3. Non-stoichiometry in material solids: Oxygen deficient oxides, metal deficient oxides and classification of non-stoichiometry.	2 hr
	4. Crystal defects: Types of defects: Point defects; Dislocations: Line defects and Plane defects	3 hr
	 5. Materials preparation techniques: I) Ceramic method II) Different wet chemical methods: A) For Powder materials: Co-precipitation, Precursor, Combustion, Sol-gel, Spray roasting, Freeze drying. B) For Single crystals: i) Growth from melt ii) Flux method iii) Epitaxial growth of single crystal thin films: Chemical and Physical methods iv) Chemical vapour transport v) Hydrothermal method vi) Dry high pressure method. C) For Amorphous Materials D) For Nanomaterials 	7 hr
	6. Reactivity of Solid Materials: Tarnish reactions, decomposition reaction, solid-solid reactions, addition reactions, double decompositions reaction, electron transfer reaction, solid-gas reactions, sintering, factors influencing reactivity of solids.	3 hr
	7. Phase Transformations in Solid Materials: Thermodynamic consideration, structural change in phase transformation, Martensite transformation, temperature and pressure induced transformations, order- disorder transitions,	3 hr

	electronic transition, transformation with a change in	
	composition.	
	8. Electrical Properties:	4 hr
	Electrical conductivity, free electron theory, fermi energy,	4111
	insulators, semiconductor and conductors, band theory of	
	semiconductor, Brilliouin zones, Hall effect, the Seebeck effect,	
	Superconductivity, BCS theory, Meissner effect, high temperature	
	superconductor.	
	9. Semiconductor Devices:	4 hr
	Diodes, transistors and Junction field effect transistor, light	
	meter, photodiode, phototransistor, solar cells, light emitting	
	diodes, laser materials.	
	10. Optical and dielectric properties:	2 hr
	Luminescence and phosphorescence, piezoelectric, ferroelectric	
	materials and applications.	
	11. Magnetic properties:	3 hr
	Introduction to magnetism, behaviour of substance in a magnetic	
	field, magnetic moments, diamagnetism, paramagnetism,	
	experimental determinations of susceptibility, ferromagnetism,	
	anti-ferromagnetism and ferrimagnetism.	
Pedagogy:	Lectures/ tutorials/ self-study or a combination of some of these.	
Text/Reference	1. A. R. West, <i>Solid State Chemistry and its applications</i> , Wiley	
books/ Readings	India Pvt. Ltd., New-Delhi, 2003 Ed.	
	2. L. V. Azaroff, <i>Introduction to solids</i> , Tata McGraw Hill, New- Delhi, 2009, 1977 Ed. (33 rd Reprint).	
	3. N. B. Hannay, <i>Treatise on Solid State Chemistry Vol.4 Reactivity</i>	
	of Solids, Plenum Press, New York, 1976, 1 st Ed.	
	4. D. K. Chakraborty, <i>Solid State Chemistry</i> , New Age International	
	Publisher, New-Delhi, 2010, 2 nd Ed.	
	5. H. V. Keer, <i>Principles of the Solid State</i> , New Age International	
	(P) Ltd., New-Delhi, (Wiley Eastern Ltd, New-Delhi), 1993, 1st Ed.	
	(Reprint 2005).	
	6. C. N. R. Rao & K. J. Rao, <i>Phase Transitions in Solid</i> , McGraw Hill,	
	New York, 1977, 1 st Ed.	
	7. W. D. Callister, Material Science and Engineering: An	
	Introduction, John Wiley, New York, 2007, 7 th Ed.	
	8. B. D. Fahlman, <i>Materials Chemistry</i> , Springer, Netherlands, 2011, 2 nd Ed.	
	9. Harry R. Allcock, Introduction to materials Chemistry, John	
	Wiley & Sons, 2011, 1 st Ed.	
	10. C. N. R. Rao & J. Gopalakrishnan, <i>New directions in solid state</i>	
	<i>chemistry</i> , Cambridge University Press, Cambridge, 1997, 2 nd	
	Ed.	
L	L -	1