Programme: M. Sc. (Botany) **Course Code:** BOO-226 **Title of the Course:** Remote Sensing: Techniques and Applications **Number of Credits:** 3 **Effective from AY:** 2020-21

Prerequisites	Science back ground.	
for the		
course:	There are a f Demote Consing establishes are similing the slobe	
Objectives:	Thousands of Remote Sensing satellites are circling the globe and continuously sending digital imageries. They have enormous application potential. However, technological advancement in this sphere is not duly supported by the trained human power to process and interpret the data. This introductory course deals with various aspects of Remote Sensing and their applications in forestry, ecology and Environment Impact Assessment.	
Contents:	 Principles and basic concepts of Remote Sensing: Principles of Electromagnetic Radiation; Interactions with Earth Surface Materials; Atmospheric Effects and atmospheric windows. 	4 Hours 4 Hours
	 Characteristics of Remotely Sensed Data: Spatial Resolution, Spectral Resolution, Radiometric Resolution, Temporal Resolution. 	
	 Remote Sensors: Electro-Optical Sensors, Across-Track Scanning Systems, Linear-Array (Along-Track) Scanning Systems, Thermal IR Sensors, Microwave and Imaging Radar Sensors, Lidar. 	5 Hours
	 Digital Image Processing and Analysis: Feature Extraction, Radiometric Corrections, Geometric Corrections, Atmospheric Correction; image enhancement, extraction of information and classification; elements of image interpretation; Image Classification (supervised and unsupervised). Hyperspectral Image Analysis. 	7 Hours
	 Contemporary Satellites and Sensors: Overview; Resourcesat-2 (AWiFS, LISS-III, LISS-IV, S-AIS); Landsat 8 [Operational Land Imager (OLI), Thermal InfraRed Sensor (TIRS)]; historical data. 	4 Hours 12 Hours
	 Applications in Forestry and Ecology: Principles of image interpretation in forestry and ecology; principles 	

	of multispectral sensing for vegetation mapping;
	spectral response of vegetation and factors affecting the
	spectral response; change detection and monitoring;
	Environmental Impact Assessment using remote
	sensing and GIS; quantitative estimation of biomass and
	other ecological parameters; estimation and
	measurement of tree and stand height, crown diameter,
	crown count, crown density etc.; Principles of Remote
	Sensing in Landuse /Land cover mapping. Estimation
	of global gross and net productivity from Earth
	Observing Systems.
Pedagogy:	Lectures/ tutorials/assignments/self-study
References /	Anji Reddy, 2001. Remote Sensing and Geographical
Readings	Information Systems, BS Publications.
-	Burrough, Peter A. and Rachael A. McDonnell, 1998.
	Principles of Geographical Information Systems. Oxford
	University Press.
	Campbell, James B. 2002. Introduction to remote sensing.
	Guilford Press, New York.
	Heywood, I. S. Cornelius and S. Carver, 2006. An Introduction
	to Geographical Information Systems. Prentice Hall.
	Jensen, J.R. 2000. Remote Sensing of the Environment: An
	Earth Resource Perspective. Prentice Hall.
	George Joseph and C.Jeganathan, 2018. Fundamentals of
	Remote Sensing. Third Edition. Universities Press (India)
	Private Limited, Hyderabad, India. 2018.
	Lillesand, T.M., Ralph W Kiefer, Jonathan W Chipman, 2004.
	Remote Sensing and Image Interpretation. John Wiley &
	Sons
	Rees W. G. 2001. Physical Principles Of Remote Sensing.
	Cambridge University Press.
	Richards, John A., Jia, Xiuping, 2006. Remote Sensing Digital
	Image Analysis: An Introduction (4th ed.). Springer.
	Sabnis, F. F. 1996. Remote Sensing: Principles and
	Interpretations. W H Freeman and Company 1996.
	Weng, Qihao, 2011. An Introduction to Contemporary Remote
	Sensing. McGraw Hill Professional, 2011.
Learning	Clear understanding of the basics of Remote Sensing (RS).
Outcomes	Theoretical base for processing and analysing the RS data.
	Ability to choose the type of RS data required for a given
	application.
	Methodological strength in applying the data in forestry,
	ecology and EIA.