Programme: M.Sc. Botany Course Code: BOO-121 Title of the Course: Techniques and instrumentation in Botany. No. of Credits: 3 Effective from AY: 2020-21

Prerequisite for course	Knowledge of chemistry, biochemistry, instrumental techniques at UG level	
Objective	This paper teaches basic of various types of techniques and instrumentation such as spectrophotometry, chromatotgraphy, electrophoresis, scintillation and current molecular techniques to carry out routine and advance research in Botany/Life Science. The emphasis is on principle of the technique, instrumentation design, methodology of sample preparation and handling of equipment and application of the technique in the field of Botany.	
Content:	Laboratory practices and safety in laboratory: General safetymeasure, Chemical hazards, Physical hazards, Biologicalhazards, spillage and waste disposal, disposal of radioactivewaste, first aid, MSDS.	2 hours
	pH and buffer solutions: SI units; Molarity and moles; Acids andbase; Hydrogen ion concentration and pH, Dissociation of acidsand bases; Buffer solutions.	3 hours
	Centrifugation Techniques: Basic principles of sedimentation; RCF and g forces, Density gradient centrifugation; design and care of rotors, safety aspects in the use of centrifuges.	2 hours
	Spectroscopic Techniques: General principles; Radiation energy and atomic structure; Basic law of light absorption; Types of spectra and their biological usefulness. Principle, application and instrumentation of UV-VIS spectrophotometry; IR (infrared) spectrophotometry; Spectrophotometry; Mass spectrometry.	9 hours
	Chromatography Techniques: General Principles and techniquesand application and material of column chromatography forAdsorption, partition, molecular sieving, ion exchange and affinity chromatography.Factors influencing the resolution.Column development- isocratic, gradient solvent and thermaldevelopment. Chromatogram reading and qualitative and quantitative determination of peaks in a chromatogram	8 hours
	Electrophoresis Techniques: General principles, application of Isoelectric focusing, SDS–PAGE (sodium dodecyl sulphate), 2D electrophoresis, Blotting techniques; Detection, recovery and estimation.	6 hours
	Radiobiology: The nature of radioactivity; Atomic structure, stability and radiation; Isotopes; Types of radioactive decay; Detection and measurement of radioactivity; Applications of radioisotopes in biological sciences; Safety aspects of use of	2 hours

	radioisotopes.	
	Molecular techniques: Protein Crystallography, Microarray	6 hours
	analysis, yeast hybrid assay, Immunoprecipitation assay, EMSA,	
	DNAse footprinting, Surface Plasmon resonance, Proximity	
	labeling.	
Pedagogy	Lecture through PPT/E-	
	learning/Assignments/Seminars/LSMMoodle	
Reading/	1. Bauman R.P. Absorption Spectroscopy. John Wiley, New York	
Reference	2. Dixon R.N. Spectroscopy and Structure. Mathuen, London	
	3. Sacks R.D. Emission Spectroscopy. John Wiley, New York	
	4. Pesez M and Bartos J. Colorimetric and Fluorometric Analysis	
	of Organic Compounds and drugs, Dekker, New York.	
	5. Becker R.S. Theory and interpretation of fluorescence and	
	phosphorescence, Wiley interscience, New York.	
	6. Guilbault G.G. Practical Fluorescence: Theory, methods and	
	Techniques. Dekker, New York.	
	7. Dean J. and Rains T. Flame emission and atomic absorption.	
	Dekker, New York.	
	8. Brech F. Analysis in instrumentation. Vol. 6. Plenum, New	
	York.	
	9. Bell R. J. Introductory Fourier Transform spectroscopy.	
	Academic Press, New York.	
	10. Colthup N.B., Daly L.H. and Wiberley S.E. Introduction to	
	Infra-red and Raman Spectroscopy 2nd Ed. Academic Press. New	
	York.	
	11. Kolthoff I.M. and Elving P. J. Treatise on analystical	
	Chemistry, Wiley Interscience, New York.	
	12. Williams D.A.R. and Mowthorpe D. J. Nuclear Maganatic	
	Resonance Spectroscopy. John Wiley, New York.	
	13. Watson I.J. Introduction to Mass spectroscopy, Raven, New	
	York.	
	14. Giddings J.C. Principles and Theory, Dynamics of	
	Chromatogtraphy Part I Dekker, New York.	
	15. Grob R.L. Modern Practices of Gas Chromatography. 2nd Ed.	
	John Wiley, New York.	
	16. Simpson C.F. Techniques in liquid chromatography, Wiley-	
	Heyden, New York. Horvath C. HPLC Vol.I Academic Orlando.	
	F.L. Fritz J.S., GjerdeD.T. and Pohlandt C. Ion chromatography, A.	
	Huthig, Heidelberg	
	17. Yau W. W., Kirkland J.J. and Bly D.D. Modern size	
	exclusion chromatography, Wiley Interscience, New York.	
	18. Bailey P.L. Analysis and ion selective electrodes 2nd Ed.	
	Heyden, London.	
	19. Bates R.G. Determination of pH: Theory and Practices, 2nd Ed.	
	John Wiley, New York.	
	20. Willard H.F., Merritt L.L., Dean, J.A. and Settle F.A.	

	 Instrumental Method of analysis. CBS Publishers and distribution, New Delhi 21. Sharma, B.K. Principal of analytical chemistry, Meerut Publication, Meerut. 22. Hames B.D. and Rickwood D. Gel electrophoresis of Proteins: A practical approach 2nd ed. IRL Press, Oxford. 23. Karp, G. (2009). Cell and molecular biology: Concepts and experiments, 7th edition. John Wiley & Sons, USA. 24. Reece, R. J. (2004). Analysis of genes and genomes.John Wiley & Sons Ltd. 25. Saraswathy, N. and Ramalingam, P. (2011) Concepts and Techniques in Genomics and Proteomics. Biohealthcare Publishing (Oxford) Limited, New York. 26. Walker, J. M. and Rapley, R. (2008). Molecular Biomethods Handbook, Hertfordshire, UK. 	
Learning	After completion of the paper, students should be able to	
Outcome:	independently work on various instruments and understand their	
	principle. Also students should be able to prepare various types of solutions and calculate mole fraction, molality, molarity, <i>etc</i> .	