Programme: M. Sc. Part-II (Analytical Chemistry)

Course Code: ACO-503

Title of the Course: Advanced Mass Spectrometry

Number of Credits: 3 Effective from AY: 2019-20

Number of Credits: .	3 Effective from AY: 2019-20	
Prerequisites	Should have studied the spectroscopy topics at T. Y. B. Sc. (Chemistry)	
for the course:	and M. Sc. part-I (Chemistry) levels.	
Course Objectives:	1. Study of various theoretical concepts related to mass spectroscopic	
1	techniques.	
	Introduction of tandem mass spectrometry techniques.	
	3. Learning interpretational aspects of spectral data obtained from	
	hyphenated techniques	
Carrea Ordania	· ·	
Course Outcomes:	1. Students should be in a position to understand principle behind	
	different ionizations sources.	
	2. Students should be in a position to select mass analysers and	
	ionization sources for analysis of particular type of analyte.	
	3. Students should be in a position to deduce structures of simple to	
	moderately complex molecules/biomolecules by combining the	
	spectral data obtained from hyphenated techniques.	
Content:	1. Introduction	
	Mass spectrometry principle, general instrumentation, general	2 hrs
	interpretation procedure for mass spectra;	21113
	Interpretation procedure for mass spectra,	
	2. Ionization methods:	10 hrs
		101113
	2.1. Gas Phase ionization: electron ionization (EI), chemical ionization	
	(CI), Field ionization and field desorption (FI, FD)	
	2.2. Particle Bomabardment: Fast atom bombardment (FAB); Secondary	
	ion mass spectrometry (SIMS)	
	2.3. Atmospheric pressure Ionization: electrospray ionization (ESI),	
	atmospheric pressure ionization (APCI)	
	2.4. Laser Desorprtion: MALDI	
	2.5. Inorganic ionization sources: thermal ionization; Spark source;	
	Glow discharge, Inductively couple plasma (ICP)	
	3. Mass analyzers:	8 hrs
	3.1. Characteristics of analysers: nominal mass, mass accuracy,	
	resolving power, resolutions, numericals to calculate nominal and	
	accurate mass	
	3.2. Magnetic, electromagnetic and double focusing	
	3.3. Single Quadrupole and triple quadrupole	
	3.4. Time of flight analyser	
	3.5. lon cyclotron resonance analyzer,	
	3.6. hybrid instrumentation	
	3.7. Detectors: electron multiplier, photon multiplier, Faraday cup	
	(Note: instrumentation, working principles, characteristic features,	
	advantages, practical consideration shall be discuss).	
	3. Hyphenated Techniques:	8 hrs
	3.1. Coupled techniques; Interface and their characteristic features;	
	Importance of hyphenation of two analytical techniques;	
	3.2. Introduction and instrumentation of following techniques: GC-	
	FTIR, GC-MS, LC-MS, MS-MS (tandem) mass spectrometry (use of	
	, , , , , , , , , , , , , , , , , , , ,	Ī

	stable isotopes), ICP-MS, TG-MS. 3.3. Analysis of chromatogram obtained from hyphenated techniques: Total ion chromatogram (TIC), Extracted Ion chromatogram (XIC). 4. Tandem Mass spectrometry applications: 4.1. Pharmacokinetic studies: Fate of drug in living organisms, metabolite identification, biotransformation of ziprasidone 4.2. Tandem MS and fragmentation pattern of following drugs: Paracetamol, 2-mercaptonicotinic acid, Sulfasalazine, Narcotics-amphetaine, 4.3. Analysis of biomolecules-Protein and peptides: structure and sequence determination using fragmentation, solve problems based on MS/MS data.	8 hrs
Pedagogy:	Lectures/ tutorials/ seminars/ term papers/assignments/	
Ç Ü	presentations/ self-study or a combination of some of these. Sessions shall be interactive in nature to enable peer group learning.	
References/ Readings	 H. Jürgen, Mass Spectrometry: A Textbook Gross, Springer publisher, 2011, 2nd Ed. E. De Hoffmann, V. Stroobant, Mass Spectrometry: Principles and Applications, J. Wiley publisher, 2007, 2nd Ed. R. B. Cole, Electrospray and MALDI Mass Spectrometry: Fundamentals, Instrumentations, Practicalities and Biological Applications, J. Wiley publishers, 2010, 2nd Ed. J. T. Watson, O. D. Sparkman, Introduction to Mass Spectrometry: Instrumentation, Applications, and Strategies for Data Interpretation, J. Wiley, 2007, 4th Ed. K. Wanner, G. Höfner (editors.), Mass Spectrometry in Medicinal Chemistry Applications in Drug Discovery, Wiley-VCH, 2007, 1st Ed. M. Kinter, N. E. Sherman, Protein Sequencing and Identification Using Tandem Mass Spectrometry, J. Wiley publisher, 2000, 1st Ed. P. James, Proteome Research: Mass Spectrometry (Principles and Practice), Springer publisher, 2000, 1st Ed. 	