Programme: M. Sc. Part-II (Analytical Chemistry)

Course Code: ACC-504

Title of the Course: Spectral methods of analysis

Number of Credits:	Effective from AY: 2019-20	
Prerequisites for the course:	Students should have studied the theory/ instrumentation and application of some of the basic analytical techniques at B. Sc. or M. Sc. Part I level for better understanding of the course content	
Course Objectives:	 Introduction of various spectral methods for analysis. Evaluate the utility of various analytical techniques as a qualitative and quantitative tool. 	
Course Outcomes:	 Students should be in a position to understand theory and instrumentation of various spectral methods of analysis. Understanding application of studied methods for qualitative and quantitative estimation at trace level. 	
Content:	1. Automation of Analytical Method : An overview of automated system; definition; distinction between automatic and automated system; advantages and disadvantages by automation; types of automated techniques. Discrete and continuous automation, Introduction to Flow injection analysis.	5 hrs
	2. X-ray Absorption, Diffraction; Neutron Diffraction and Fluorescence Spectroscopy: Introduction; origin of X-rays; interaction of X-ray with matter; X-ray spectrometer; theory of X-ray absorption; X-ray diffraction by crystal; comparison of X-ray absorption with X-ray diffraction; Bragg's law; interpretation of X-ray diffraction powder pattern; calculation of lattice parameters; neutron diffraction introduction; theory; instrumentation and applications; X-ray fluorescence- introduction; applications. Introduction to Mossbauer spectroscopy; theory and application.	10hrs
	3. Molecular Fluorescence, Phosphorescence and Chemiluminescence Spectroscopy: Introduction; meaning of luminescence and chemiluminescence; principles of fluorescence, chemical structure and fluorescence; theory of molecular fluorescence; instrumentation- single and double beam filter fluorimeters, relationship between intensity of fluorescence and concentration; spectrofluorometer; phosphorimeter; factors influencing fluorescence and phosphorescence; basic differences in measurement of fluorescence and phosphorescence; advantages; limitations and precautions; selection of excitation wavelength for analysis; reporting fluorescence spectra; applications of fluorimetric analysis. Chemiluminescence: Introduction; principle; types; chemiluminescence; quantitative chemiluminescence; Introduction to gas phase chemiluminescence.	12hrs
	4. Microscopy: Chemical microscopy- microscope; parts and optical path; numerical aperture and significance; applications and qualitative and quantitative study;	9 hrs

	Electron microscony, principle, operation, cample proparation, configer	
	Lieution microscopy- principle, operation, sample preparation, replicas,	
	snadowing, application to analysis; electron probe analyzer, ion	
	microscope; metallography- metallurgy, microscopic examination;	
	specimen preparation and examination; interpretation of micrographs;	
	SEM, TEM, AFM.	
	Introduction to Magnetic resonance imaging (MRI) technique and Photo	
	acoustic spectroscopy; theory and applications	
Pedagogy:	lectures/ tutorials/ seminars/ term papers/assignments/ presentations/	
	self-study or a combination of some of these. Sessions shall be	
	interactive in nature to enable peer group learning.	
Text Books/	1. D. A. Skoog, Principles of Instrumental Analysis, Sounders, 1997, 5 th	
References /	Ed.	
Readings	2. B. D. Cullity, <i>Elements of X- ray Diffraction</i> 4, Addison Wisley, 1967	
5	3. J. Wormald, Diffraction Method, Oxford University, Press, 1973	
	A Baun G F Butleworth Neutron Scattering in Chemistry London	
	F NN Croopwood T.C. Cibbs Masshauar Spectroscop Chapmann	
	5. N.N. Greenwood, T.C. Gibbs, <i>Wossbauer Spectroscop</i> , Graphianin	
	6. V. I. Goldanski, R. H. Harber, Chemical Application of Mossbauer	
	Spectroscopy, Academic Press, 1968	
	7. C.N.R. Rao, G.R Ferraro, <i>Spectroscopy in Inorganic Compounds</i> , Academic Press, 1970	
	8. R. Cheney, Basic Principles of Spectroscopy, Mac Grows Hill, 1971	
	9. M. A. Brown, R. C. Semelka; <i>MRI: Basic Principles and Applications</i> ,	
	Wiley, Chichester, 1995	
	Experimental Methods; CRC Press, 1973	
	11. R.S. Drago, Physical Principles in Inorganic Chemistry, Reinhold	
	Publishing Corp., New York, 1965	
	12. R. D. Broun, Introduction to Instrumental Analysis, Mc Graw Hill,	
	1987	
	13. A. M. Garcia-Campana, Chemiluminescence in Analytical Chemistry	
	CRC Press: 2001	