Programme: M. Sc. Part-II (Analytical Chemistry)

Course Code: ACC-503

Title of the Course: Separation Techniques

Number of Credits: 3 Effective from AY: 2019-20

Prerequisites	Should have knowledge of basic analytical techniques such as	
for the course:	chromatography, electro-analytical techniques and data handling at	
Course Objectives:	MSc part-l level. 1. Introduction of various statistical approach used in analytical data	
Course Objectives.	handling	
	2. Introduction of different separation techniques used for qualitative,	
	quantitative estimation	
Course Outcomes:	1. Students should be in a position to understand principle behind	
	different purification techniques.	
	2. Students should be in a position to select the separation techniques	
	for purification of analytes from interferents.	
	3. To understand the HPLC method development and application in	
0	qualitative and quantitative analysis	/ 1
Content:	1. Basic Separation Technique:	6 hrs
	1.1. General aspects of separation techniques-role of separation technique in analysis;	
	1.2. Separating the analyte from interferents	
	1.3. General theory of separation efficiency: Separation factor	
	1.4. Classifying separation techniques: Separations based on Size;	
	Separations based on mass or density, Separations based on	
	complexation reactions (Masking); Separations based on a change	
	of state; Separations based on a partitioning between phases.	
	(Note: Following techniques shall be discussed as representative	
	example)	
	1.5. Basic principles of distillation; theory of vacuum, steam, azeotropic and fractional distillation.	
	1.6. Fractionation by solvent extraction: based on chemical nature and	
	based on polarity of analyte.	
	1.7. Centrifugation techniques: Sedimentation velocity, Analytical and	
	preparative centrifugation; Density gradient centrifugation;	
	applications in separation.	
	2. Chromatographic Methods:	24hrs
	2.1. Introduction to chromatography: definitions, theories, principles	
	of chromatographic technique, terms and parameters used in	
	chromatography, classification of chromatographic methods,	
	Partition versus adsorption chromatography, development of chromatograms, qualitative and quantitative analysis by	
	chromatography;	
	2.2. Planar Chromatography (Paper and thin layer):	
	2.2.1. Paper Chromatography- introduction, principle, theory, types	
	(ascending, descending, circular, two dimensional paper	
	chromatography); techniques; choice of solvent; multiple	
	development, qualitative and quantitative measurement	
	applications;	
	2.2.2 Thin Layer Chromatography (TLC)- definition; mechanism;	
	efficiency of thin layer plates; methodology (technique); criteria	

- for selection of stationary and mobile phases (numerical to calculate elution strength of mixed solvents used as mobile phase); choice of adsorbents; preparation of plates; spotting (spot capacity); development of chromatogram; identification and detection using physical and chemical methods; reproducibility of Rf values and improving resolution; Two-dimentional TLC; comparison of TLC with paper chromatography, column chromatography, thin layer ionophoresis and electrophoresis; Qualitative, quantitative evaluation and applications;
- 2.3. High-performance TLC (HPTLC): introduction, principle, theory, classification (classical, high performance, ultra, preparative HPTLC); Difference between TLC and HPTLC with respects to the parameters; scanning densitometer; Quantitative analysis using TLC-densitogram and applications.
- 2.4. Gas Chromatography (GC): Instrumentation, selection of operating condition, choices of GC column, methods to prepare derivatives of samples (silylation, acylation, alkylation), working principle of GC detectors such as TCD, ECD, FID, Analysis of GC data and quantification methods such as normalizing peak area, internal std., external std, standard addition.
- 2.5. Column Chromatography- definition; types (conventional, flash, LPLC, Dry column vacuum chromatography); principle; packing, loading, eluting and collecting eluent in the column chromatography and experimental requirements; theory of development; migration rates of solutes; band broadening and column efficiency; variables that affect column efficiency; Van Deemeter equation and its modern version; scale-up and thump rule for conventional column, qualitative and quantitative analysis; applications.
- 2.6. Liquid-liquid partition chromatography (HPLC)- Introduction; selection of stationary and mobile phase; types of bonded phase chromatography-NPC and RPC and stationary phases used; reversed phase partition chromatography; steps in HPLC method development in partition chromatography- elution techniques (isocratic and gradient, ion pairing agents, buffer agents, organic modifiers); optimization of capacity factor, gradient selectivity factor and column plate numbers; numerical on method development using Snyder's polarity index. Preparative vs analytical HPLC; Chiral chromatography- Pirkle stationary phases, examples of enantiomer separation such as ibuprofen, calculation of enantiomeric excess. Choosing detectors- working principle of RI, UV-Vis, conductivity and ELSD.
- 2.7. Size Exclusion Chromatography: definition; theory; principle; types; stationary phases in gel chromatography; physical and chemical characteristics of gel, mechanism of gel permeation chromatography (GPC); instrumentation of GPC; applications of GPC- determination of molecular weight of polymer with numericals.
- 2.8. Supercritical-Fluid Chromatography: introduction; important properties of supercritical-fluids; instrumentation and variables, SFC column vs other column, applications.

	3. Electrophoresis:	6 hrs
	3.1. Theory of electrophoresis; Type of electrophoresis- Free solution	
	and supporting medium electrophoresis, paper electrophoresis,	
	capillary electrophoresis and gel electrophoresis.	
	3.2. Capillary electrophoresis-instrumentation, sample introduction in	
	CE, types of CE methodology, electrophoretic mobility and	
	electroosmatic mobility, total mobility, efficiency and resolution in	
	CE column, numericals.	
	3.3. Gel electrophoresis - types of gel, Polyacrylamide gel	
	electrophoresis PAGE, Agarose GE, factors affecting separation;	
	3.4. Staining and detecting electrophoresis band;	
	3.5. Separation of neutral molecule by MEKC;	
	3.6. Separation and determination of Vitamin B-complex by using CZE	
	and MEKC.	
Pedagogy:	Lectures/ tutorials/ seminars/ term papers/assignments/	
3 33	presentations/ self-study or a combination of some of these. Sessions	
	shall be interactive in nature to enable peer group learning.	
References/	1. G. D. Christian, <i>Analytical Chemistry</i> , John Wiley, New York,	
Readings	2004, 6 th Ed.	
	2. D. A. Skoog, D. M. West,F. J. Holler, Fundamentals of Analytical	
	Chemistry, Sounders College Publishing, 2014, 9th Ed.	
	3. D. Harvey, <i>Modern Analytical Chemistry</i> , The McGraw-Hill, 2000, 1 st	
	Ed.	
	4. L. R. Snyder, J. J. Kirkland, J.W. Dolan, <i>Introduction to modern liquid</i>	
	chromatography, John Wiley, New York, 2009, 3 rd Ed.	
	5. H.H. Willard, L.L. Merritt, J.A. Dean, F.A. Settle, Instrumental	
	 methods of Analysis, CBS Publishing New Delhi, 7th Ed. 6. G. H. Jeffery, J. Bassett, J. Mendham, R C. Denney, Vogel's Text 	
	Book of Quantitative Chemical Analysis, John Wiley, New York,	
	1989, 5th Ed.	
	7. H. Gunzler, A. Williams, <i>Handbook of analytical techniques</i> , John	
	Wiley, New York, 2002, 1st Ed.	
	,	