Programme: M. Sc. Part-II (Analytical Chemistry)

Course Code: ACC-501

Title of the Course: Fundamentals of Chemical Analysis

Number of Credits:	3 Effective from AY: 2019-20	
Prerequisites	Should have knowledge about difference between analytical chemistry	
for the course:	and chemical analysis, role of analytical chemist, differences between	
	conventional method of analysis and instrumental methods.	
Course Objectives:	1. Introduction to the various chemical method of analysis, details of	
	underlying principle of chemical methods, advantages and	
	limitations	
	2. Application of chemical methods for qualitative and quantitative	
	estimation	
Course Outcomes:	1. Students should be in a position to understand basic principle	
	behind different conventional method of analysis.	
	2. Student should understand the limitation of method of analysis,	
	for particular applycic	
	2 Students should be in a position to understand the basic chemistry	
	on which the method of analysis based on	
Content:	1 Acid-Base Titrations	10 hrs
content.	Theory of acid-base indicators for Acid-Base titrations: colour change	101113
	range of indicator selection of proper indicator indicator errors:	
	neutralization curves for strong acid-strong base, weak acid-strong	
	base and weak base-strong acid weak acid-weak base titrations; poly	
	functional acids and bases; titration curves for poly functional acids and	
	bases; titration curves for amphiprotic species; determining the	
	equivalence point; feasibility of acid - base titrations; magnitude of the	
	equilibrium constant; effect of concentration; typical applications of	
	acid-base titrations.	
	2 Precipitation titrations	3hrs
	Introduction; feasibility of precipitation titrations; titration curves;	
	effect of titrant and analyte concentration on titration curves; effect of	
	reaction completeness on titration curves; titration curves for mixture	
	of anions; indicators for precipitation titrations; the Volhard, the Mohr	
	and the Fajans methods	
	3 Complexometric titrations	8hrs
	The complex formation reactions; stability of complexes; stepwise	01113
	formation constants; organic complexing agents; amino carboxylic acid	
	titration; EDTA; acidic properties of EDTA; EDTA complexes with metal	
	ions; equilibrium calculations involving EDTA in solution; condition of	
	formation constants; EDTA titration curves; effect of other complexing	
	agents on EDTA; factor affecting the titration curves; completeness of	
	reaction; indicators for EDTA titrations; theory of common indicators;	
	titration methods using EDTA- direct titration, back titration and	
	displacement titration; indirect determinations; titration of mixtures;	
	selectivity, masking and damasking agents; applications of EDIA	
	magnesium mangapose and zing in a mixture	
	magnesium, manyanese and zinc m a mixture.	

		-
	4. Basic concepts in Electrochemical Titrations	3 hrs
	Faradic and non-Faradic currents; reversible and irreversible cells; EMF	
	series; standard electrode potential; Nernst equation; calculation of	
	cell potential: effect of current: ohmic potential: polarization;	
	decomposition notential: over voltage: concentration polarization:	
	mechanism of mass transport: introduction to potentiometric methods	
	Le deu titestione	1 1 1 1 1 1 1
	5. Redox illrations	4 1115
	Redox litrations: Equilibrium constants for redox reactions- electrode	
	potentials in equilibrium systems; calculation of equilibrium constants;	
	redox titration curves- formal redox potentials; derivation of titration	
	curves; factors affecting the shape of titration curves concentration;	
	completeness of reaction; titration of mixtures- feasibility of redox	
	titrations; detection of end point and redox indicators; structural	
	aspect of redox indicators: specific and nonspecific indicators: choice of	
	indicator: notentiometric end point detection; sample preparation.	
	ne reduction and pre ovidation	
	A Dedicimmunoessey	2 hrs
	U. Rauluinininullassay	21112
	Radionninunoassay, its principle and applications, instrumentation for	
	radio bioassay; clinical application of the radioimmunoassay of insulin,	
	estrogen and progesterone; receptor techniques of breast cancer;	
	enzyme- linked immunosorbent assay; principles; practical aspects;	
	applications.	
	7. Gravimetric analysis	5hrs
	Introduction; properties of precipitates and precipitating reagents;	
	completeness of precipitates; super saturation and precipitate	
	formation; particle size and filterability of precipitates; colloidal	
	precipitates; crystalline precipitates; purity of the precipitate; co-	
	precipitation, post precipitation; conditions for precipitation; fractional	
	precipitation; precipitation from homogenous solution; organic reagent	
	as precipitants-dimethyl gloxime oxine cupferon salicyldoxime	
	washing of precipitates: drving and ignition of precipitates: calculation	
	of results from gravimetric data: applications	
Pedagogy:	lactures/tutorials/ seminars/ term papers/assignments/	
reuayoyy.	procentations/ self study or a combination of some of those. Sessions	
	presentations/ self-study of a combination of some of these. Sessions	
Deferment	Shall be interactive in flature to enable peer group learning.	
References/	I. G. D. Christian, Analytical Chemistry, John Wiley, New York,	
Readings		
	2. D. A. Skoog, D. M. West & F. J. Holler, Fundamentals of An	
	alytical Chemistry, Sounders College publishing, 2014, 9"Ed.	
	3. J. Mendham, R.C. Denney, J.D. Barnes & M. Thomas, <i>Vogel's Textboo</i>	
	k of Quantitative Inorganic Analysis, Pearson Education Asia 2000,	
	6 th Ed.	
	4. D. Harvey, <i>Modern analytical chemistry</i> , The McGraw-Hill, 2000, 1 st	
	Ed.	
	5. G. H. Jeffery, J. Bassett, J. Mendham, R C. Denney, Vogel's Text	
	Book of Quantitative Chemical Analysis, John Wiley, New York,	
	1989, 5 th Ed.	