<u>IX AC – 9</u>
11, 15 & 18.05.2018

	Board of Studies and then place the same before the Academic Council for approval.	
(Action: AR-PG)		
D 3.39	Minutes of the meeting of Board of Studies in Mathematics held on 12/04/2018.	
	The Academic Council approved the minutes of the meeting of the Board of Studies	
	in Mathematics held on 12/04/2018. It was suggested to indicate the Code for the	
	Core Course as MTC and Optional courses as MTO.	
	(Action: AR-PG)	
D 3.40	Minutes of the meeting of Board of Studies in English held on 19/03/2018.	
	The Academic Council approved the minutes of the meeting of the Board of Studies in English held on 19/03/2018.	
	(Action: AR-PG)	
D 3.41	Minutes of the meeting of Board of Studies in Computer Science & Technology-PG held on 02/05/2018.	
	The Academic Council did not approve the minutes of the meeting of the Board of Studies in Computer Science & Technology-PG held on 02/05/2018.	
	The Chairperson, Board of Studies was requested to take the matter back to the Board of Studies and then place the same before the Academic Council for approval.	
	(Action: AR-PG)	
D 3.42	Minutes of the meeting of Board of Studies in Portuguese held on 16/05/2018 The Academic Council approved the minutes of the meeting of the Board of Studies in Portuguese held on 16/05/2018.	
	(Action: AR-PG)	
D 4	REPORTS OF AFFILIATION INQUIRY COMMITTEE	
D 4.1	Govt. College of Arts, Science and Commerce, Khandola.	
D 4.1.1	Continuation of affiliation for M.Com. Programme for the academic year 2018-19.	
	The Academic Council approved the recommendations of the Affiliation Inquiry	
	Committee for continuation of affiliation for M.Com Programme for the Academic	
	year 2018-19.	
	(Action: AR-General)	
D 4.1.2	Continuation of affiliation for M.Sc. Inorganic Chemistry programme for the academic year 2018-19.	
	The Academic Council approved the recommendations of the Affiliation Inquiry Committee for continuation of affiliation for M.Sc. Inorganic Chemistry Programme for the academic year 2018-19 with increase in seats.	
	(Action: AR-General)	
D 4.2	Narayan Zantye College of Commerce, Bicholim.	
D 4.2.1	Continuation of affiliation for Research Centre in Commerce for the academic year	

ADDITIONAL AGENDA

D 3	BOARDS OF STUDIES
D 3.39	Minutes of the meeting of Board of Studies in Mathematics held on 12/04/2018
	 Part A (i) (Recommendations regarding courses of study in the subject or group of subject at the Undergraduate level.) NIL (ii) (Recommendations regarding courses of study in the subject or group of subject at the Postgraduate level) The revised scheme of instruction was discussed and syllabi for various courses are recommended for approval. The details are given in <u>Annexure I</u> (refer page no 2148)
	 Part B. (i) (Scheme of examinations at the under-graduate level.) NIL (ii) (Panel of examiners for different examinations at the under-graduate level.) The panel of examiners is prepared and is recommended for approval. (See Annexure II) (iii) (Scheme of examinations at the post-graduate level.) NIL
	Part C:(Recommendations regarding preparation and publication of selection of reading material in any subject or group of subject or group of subjects and names of persons recommended for appointment to make the selection)NIL
	Part E: (MCDLXXXII) Recommendations of text books for the course of study at the under-graduate level. NIL
	(ii) Recommendations of text books for the course of study at the post-graduate level. NIL
	Part F: (i) (The declaration by the Chairman, that the minutes were read out by the Chairman at the meeting itself.)
	Important points for the approval of the academic council.1. Proposal of PG Courses. (Annexure I)2. Panel of Examiners for UG Courses. (Annexure II)The meeting ended with a formal vote of thanks to the Chair.I hereby declare that the minutes are circulated to the members and decisions areinformed to the members in the meeting itself.Place: Goa University(Prof. Y.S. Valauliker)Date: 12 th April, 2018Chairperson, Board of Studies in Mathematics.

		<u>IX AC- 9</u> 11&15-5-2018
	Part G; The remarks of the Deans, FNS	
	1. The minutes are in order.	
	2. The minutes may be placed before the Academic Council.	Acadomia
	Important points of the minutes that needs policy decision of the Council to be recorded.	e Academic
		(Prof. G.M. Naik)
		of Natural Sciences
		i Natural Sciences
		(Back to Index)
D 3.40	Minutes of the meeting of Board of Studies in English held on 19/	03/2018
	PART – A	
	Recommendation regarding course of study in the sub	piect or group of
	subjects at the undergraduate level. – The members of th	
	reworked on the General Electives and Skill Enhancement	
	and Sem IV of B.A., based on the recommendations of th	e members of the
	Academic Council, namely,	
	i. To clear the syllabus of overlapping of literary st	
	ii. To indicate the Semester in which the courses ar	re to be offered.
	Accordingly, all papers are shown to be term-sp	pecific and the
	syllabus is cleared of any overlapping or repetit	
	Annexure I(refer page no 2175)	
	ii) Recommendation regarding courses of study in the sul	bject or group of
	subjects at the Post-graduate level - NIL	
	PART – B	
	i) Scheme of examinations at the undergraduate leve	
	ii) Panels of examiners for different examinations at t	he undergraduate
	level – NIL	
	iii) Scheme of examinations at the post –graduate leve	el – NIL.
	iv) Panels of examiners for different examinations at t	he post –graduate
	level. – NIL	
	PART – C	d muhlication of
	(MCDLXXXIII) Recommendation regarding preparation and	
	selection of reading	
	material in any subject or group of subject and the nar	nes of person
	recommended for appointment to make the selection.	-
	PART – D	
	(MCDLXXXIV) Recommendation regarding general acade	mic requirements

D 3.39 Minutes of the meeting of Board of Studies in Mathematics held on 12/04/2018

Annexure I

APPENDIX I

List of Courses:

(I) <u>CORE COURSES</u>
MAT-101: Real Analysis
MAT-102: Linear Algebra
MAT-103: Basic Algebra
MAT-104: Differential Equations
MAT-105: Topology
MAT-201: Several Variable Calculus
MAT-202: Algebra
MAT-203: Functional Analysis

(II) OPTIONAL COURSES

MAT-106: Methods of Applied Mathematics MAT-107: Graphs and Networks MAT-108: Actuarial Science MAT-204: Partial Differential Equations MAT-205: Complex Analysis MAT-206: Measure Theory MAT-207: Number Theory MAT-208: Lie Algebra MAT-209: Special Functions MAT-210: Difference Equations MAT-301: Advanced Algebra MAT-302: Combinatorics MAT-303: Differential Geometry MAT-304: Mathematical Modeling MAT-305: Integral Equations MAT-306: Sturm Liouville Problem MAT-307: Mathematics for Finance MAT-401: Advanced Linear Algebra MAT-402: Commutative Algebra Note: All the courses are of 4 credit

(Back to Index)(Back to Agenda)

Detail Syllabus

Prerequisites

Programme: M. Sc. (Mathematics) Course Code: MAT-101 ANALYSIS Number of Credits: 4 Effective from AY: 2018-19

Basic Mathematical Analysis

Title of the Course: REAL

		<u>IX AC- 9</u>
		11&15-5-2018
Objective	This course will develop fundamental concepts in Real Analysis and make the student acquainted with tools of analysis which is essential for the study and appreciation of many related branches of mathematics and applications.	
Content	1.Real and Complex Number Systems	12 Hours
	Peano's Axioms for Natural Numbers and Induction Principle, Integers and Rational numbers, Ordered sets and LUB Property, Ordered Field Axioms, Real Numbers and Completeness, Archimedean property, integral part of a real number, density of rationals, and irrationals, Existence of n^{th} roots of nonnegative reals and decimal representation of reals, Complex Number System, Countable sets, Uncountable sets, Countability of Rationals, Uncountability of Reals, Extended Real Number	
	System.	12 Hours
	2.Elements of Point Set Toplogy Metric Spaces, Euclidean Spaces, Open balls and Open sets in \mathbb{R}^n , Structure of open sets in \mathbb{R}^1 , Adherent points and Accumulation points, Closed sets, Perfect sets, Bolzano- Weierstrass Theorem, Cantor Intersection Theorem, Lindelöf Covering Theorem, The Heine-Borel Covering Theorem, Compactness in \mathbb{R}^n , Compactness in metric spaces, Connected sets in metric spaces, Connected sets.	12 Hours
	 3.Limits and Continuity Convergent sequences in a Metric space , Cauchy sequences and Complete metric spaces, Limit inferior and Limit superior of a sequence, Limit of a Function- (Real valued, complex valued, vector valued functions), Continuous Functions, Continuity and Compactness, Continuity and Connectedness, Bolzano's Theorem and Intermediate value Theorem, Uniform Continuity, Uniform Continuity and Compactness, Discontinuities of Real valued Functions, Monotonic Functions, Infinite limits and Limits at infinity. 4.Derivatives 	12 Hours
	Derivatives and Continuity, Algebra of Derivatives and Chain rule (Statements only),One sided derivatives and Infinite Derivatives, Functions with non-zero derivatives, Zero derivatives and Local extrema, Rolle's Theorem, Mean value Theorems and consequences, Intermediate value Theorem for Derivatives, Taylor's Formula with Remainder, Derivatives of Vector valued Functions and Complex valued Functions, Derivatives of Higher Order and L'Hospital's Rules.	
Pedagogy	Lectures/ Tutorials/Assignments/Self-study	
References/ Readings	 1. Mathematical Analysis, Tom M. Apostol, Narosa Publishing House, 1996. 2. Principles of Mathematical Analysis, Walter Rudin, McGraw-Hill International Editions, 1976. 	

	<u>IX AC- 9</u>
	11&15-5-2018
	3. A Basic Course in Real Analysis, Kumar and Kumaresan, CRC
	Press, 2015.
	4. Real Analysis, N.L. Carothers, Cambridge University Press, 2000.
Learning	On Completion of this course the student will be able to
Outcomes	 Describe the difference between rational numbers and real numbers. Understand LUB property and apply it to proofs and solutions of problems. Calculate limit inferior and limit superior Understand and use concepts related to metric spaces such as continuity, compactness and connectedness Apply mean value theorem to problems in the context of Real Analysis

Programme: N	A.Sc. Mathematics	
Course Code:	MAT-102	Title of the Course: LINEAR ALGEBRA
Number of Cro	edits: 04	
Effective from	: June, 2018.	
Prereauisites	Should have passed B.S.	c. with Linear Algebra as one of the subjects.

Prerequisites	Should have passed B.Sc. with Linear Algebra as one of the subjects. Should be familiar with the notions of vector spaces, basis, dimension, Linear maps, matrix representation of linear maps and their algebra and Rank-Nullity theorem.		
Objectives	To prepare students to handle solving problems involving linear equations and determining the qualitative properties of the solution set.		
Contents	1. Basic Linear Algebra : Vectors Spaces, Examples, Linear combinations, Linear Span, Linear dependence and independence, basis and dimension. (Review)	4 Hours	
	 Linear Maps: Linear maps, Matrix Representation, Algebra of Linear maps and Matrices, Rank Nullity theorem. (Review) 	4 Hours	
	 Linear functionals : Linear functional on a vector space, Dual of a vector space and properties, Transpose of a linear map and the matrix. 	8 Hours	
	4. Diagonalisation : Characteristic values and characteristic vectors, Invariant subspaces, diagonalization. (Review).	4 Hours	
	 Inner Product spaces: Inner product spaces, examples and basic properties, Parallelogram law, Orthonormalisation of a basis, Bessel's inequality, Linear fucntionals on inner-product spaces, dual, Riesz Representation theorem. 	10Hours	
	 Linear operators: Linear operators on inner-product spaces, adjoint of an operator, Unitary, self-adjoint and normal operators, Spectral theorem for self-adjoint and normal operators. 	16Hours	
Pedagogy	Class room lectures and tutorials, assignments and library reference		
References	References1. Kenneth Hoffmann and Ray Kunze, Linear Algebra, PHI, 1997.2. S. Kumaresan, Linear Algebra, PHI, 2000.		

Learning	The students will be equipped to learn basic Functional analysis, Several
Outcomes	Variable Calculus, Advanced Algebra, Differential Equations, etc.

Programme: M. Sc. (Mathematics)

Course Code: MAT-103 Algebra Title of the Course: Basic

Number of Credits: 4

Effective from AY: 2018-19

Prerequisites for the	Basic group Theory. Basic set theory. Notion of function		
<u>course:</u>	and relation.		
Objective:	This course is also prerequisite for courses such as		
	Algebra, Commutative Algebra, Advanced Number		
	Theory, Galois Theory.		
<u>Content:</u>	1. Logic: Mathematical statements, Quantifiers,		
	Conjuction and Disjunction, Negation, Implications	3 hours	
	and Converses, Equivalence of Statements.		
	2. Set Theory: Familiarising Zarmilo-Frankel Axioms,	5 hours	
	Expressing Sets, Set Operations, Ordered Pairs of		
	Points, Product of sets.		
	3. Relations: Equivalence Relations, Equivalence	5 hours	
	Classes and Quotient as a Set, Cross-sections.		
	4. Functions: Function from Sets to Sets, Images,	5 hours	
	Pre-images and their Algebra, One-one and Onto		
	Functions and Quotient Map, Schauder-Bernstein		
	Theorem, Cardinality.	5 hours	
	5. Natural Number system: Partial Order, Well-	5 110013	
	ordered set, Well-ordering Principle, Axiom of		
	Choice, Order Preserving Functions, Order		
	Isomorphism, Peano's Axiom.		
		9 hours	
	6. Groups and subgroups: Definition and examples		
	of groups, Cyclic groups, Permutations groups,		
	Dihedral groups, Some matrix groups.	0 hours	
	7. Cosets and Direct Products: Group of	9 hours	
	Permutations, Orbits, cycles and Alternating		
	groups. Subgroups, Cosets and Theorem of		
	Lagrange's, Euler's Theorem, Wilson's Theorem,		
	Direct products and Finitely generated abelian		
	groups, class equations and p-groups.	7 hours	
	8. Homomorphism and Factor groups:		

		<u>IX AC- 9</u>
		11&15-5-2018
	Homomorphisms and Factor groups and	
	Fundamental theorem of Group Homomorphisms	
	Isomorphism Theorems.	
Pedagogy:	lectures/ tutorials/assignments/self-study	
References/Readings	 J.B. Fraleigh, A First Course in Abstract Algebra, Seventh Edition, Pearson International, 2002. I. N. Herstein, Topics in Algebra, Second Edition, Wiely Student Edition, 2006. V. Kakkar, Set Theory, Narosa Publisher, 2016. A. Kumar, S. Kumaresan and B.K. Sarma, A Foundation Course in Mathematics, Narosa Publisher, 2018. 	
Learning Outcomes	 Taking this course students get prepared to take more advanced courses such as Algebra, Advanced Algebra. Taking this course students can then read Galois theory and Rings and Field Theory. 	

Programme: M.Sc. Mathematics

Course Code: MAT-104Title of the Course: DIFFERENTIAL EQUATIONSNumber of Credits: 04

Effective from: June, 2018.

Prerequisites Knowledge of basic Real Analysis and Linear Algebra.			
Objectives	This course develops the ability to solve ordinary differential equations by standard methods. It will help to understand some important properties of solution of differential equation		
Contents	1. Review of Basic concepts: Linear differential equations of the first order. Higher order Linear differential equations with constant coefficients.	12 hours	
	2. Linear Equations with variable coefficients. Standard methods and series solution. Legendre equation. Bessel's equation.	12 hours	
	3. Systems of Linear differential equations. Existence and uniqueness of solutions of first order equation and nth-order equation.	12 hours	
	4. Self adjoint second order differential equation. Sturm Liouville Problems. Greens functions. Zeros of solutions. Comparison Theorems. Linear oscillations.	12 hours	
Pedagogy	Oscillations of $x''(t) + a(t)x(t) = 0$. Lectures/ tutorials/assignments/self-study		
Pedagogy Lectures/ tutorials/assignments/self-study References Main Texts: 1 . Deo S.G.; Raghvendra V.; Lakshmikantham V. : Text book of Differential equations, 2nd edition, Tata McGraw Hill, New Delhi 1997. 2 . E.A. Coddington; An introduction to Ordinary Differential E			

<u>IX AC- 9</u> 11&15-5-2018

	Prentice Hall,India,2003.
	 <u>Reference texts :</u> 3. Kelly W. Patterson A.C. : Theory of Differential equations, Springer. 4. Simmons G. F. Differential equations with historical notes. Tata MH. 5. Agarwal R. Essentials of Ordinary differential equations, Springer.
Learning Outcomes	Students will learn to solve ordinary differential equations and to analyse the properties of solution.

Programme: M.Sc. Mathematics

Programme: M.Sc. Mathematics		
Course Code: MAT-105 Title of the Course: TOPOLOGY		
Number of Credits: 04		
Effective from		
Prerequisites	Should have undergone a basic course in Real Analysis. Should be fa	
	with the notions of set theory. It is desirable to have familiarity with	n the
	metric topology.	
Objectives	To prepare students to handle courses involving topology and geon	netry
	including complex analysis, functional analysis and several variable	calculus.
Contents	1. Topological Spaces and Continuous Functions: Definition	12
	of Topological spaces, basis, subbasis, open sets, closed sets,	hours
	limit points, closure, interior, subspaces, continuous	
	functions, Product Topology and quotient topology.	
	Countability Properties: First and second countable	6 hours
	spaces, Separable spaces, Metric spaces and countability	
	properties.	
	3. Separation Properties: Hausdorff spaces, Regular spaces	6 hours
	and normal spaces, Product, subspace and continuous	
	images of regular and normal spaces.	
	Connectedness: Connected spaces, connected subsets of	10
	$\mathbb R$, path connected spaces, Product and continuous images of	hours
	connected spaces, locally connected spaces, components	
	and path components.	
	5. Compactness: Compact subsets of topological spaces,	14
	Compact subsets of \mathbb{R} , Products and continuous images of	hours
	compact subsets, Compact Hausdorff spaces, Limit point	
	compactness, Sequential compactness, Comapct metric	
	spaces, Lebesgue number lemma, Locally compact spaces	
and one-point compactification.		
Pedagogy	Class room lectures and tutorials, assignments and library reference.	
References	1. James Munkres, Topology and Introduction, Pearson Education, 2002.	
	2. Stephen Willard, General Topology,	
	3. M A Amstrong, Basic Topology, Springer Verlag, 1983.	
· ·	4. J. Dugunji, Topology	
Learning	Students will be prepared to undertake basic courses in Complex A	•
Outcomes	Functional Analysis, Several Variable Calculus, Measure Theory etc. and	

Programme: M.Sc. Mathematics Course Code: MAT-106 MATHEMATICS Number of Credits: 04 Effective from: June, 2018.

Title of the Course: METHODS OF APPLIED

Effective from		
Prerequisites		
	Equations.	
Objectives	This course develops the ability to apply mathematics to some of the	
	problems of Mathematics and Physics.	
Contents	1. Improper Integrals . Review , Properties and L ² convergence.	6 hours
	2. Fourier series : Generalized Fourier series, Fourier sine/cosine	12
	series. Point wise and uniform convergence. Differentiation and	hours
	integration of Fourier series.	
	3. Fourier Transforms and its properties : : Fourier Transform of	10
	L ¹ (IR)—functions. Basic properties related to translation,	hours
	dilation and linearity. Computation of Fourier transform of	
	simple functions. Fourier Inversion. Statement of Fourier	
	inversion Theorem. Convolution. Convolution Theorem.	
	Examples. Parsevaal's Identity.	20
	4. Variational problems : Variational problems with fixed	20
	boundaries. Euler-Lagrange equations, Brachistochrone problem,	hours
	Elementary variational problems with moving boundaries. One-	
	side variation, Isoperimetric problem, Canonical forms of Euler	
	equations. Sufficient conditions for extremum.	
Pedagogy	Lectures/ tutorials/assignments/self-study	
References	Main Texts:	Ducklause
	1. J.W.Brown and R.V.Churchill, Fourier series and Boundary Value	Problems,
	McGraw Hill.	
	2. K.Sankara Rao, Introduction to Partial Differential	
	Equations, Prentice Hall of India, 1995.	
	3. Lev Elsgolts, Introduction to the Calculus of Variations, MIR Public	lications.
	4. T.Apostal Mathematical analysis, Narosa Publishers.	
Reference texts :		
	4. G.B.Arfken and H. Weber, Mathematical methods for Physicists	. Elsevier
	Publications.	
	5. R. Weinstock, Calculus of Variations, Dover Publication.	
	6. I.M.Gelfand and S.V.Fomin, Calculus of Variations. Dover Publication.	
Learning		
Outcomes 2. Learns techniques of applying Fourier Transform.		
3. Understands basic concepts of variational problems		
	S. Shacistanas basic concepts of variational problems	
L	1	

Programme: M.Sc. (Mathematics) Course Code: MAT-107 Number of Credits: 4 Effective from AV: 2018 2019

Title of the Course: GRAPHS AND NETWORKS

	NY: 2018-2019	
Prerequisites	Basic set theory	
Objective	Course deals with the basics of graph theory, basic definition of simple graphs, types of graph, matrix representation of graphs, isomorphism in graphs, Euler & Hamiltonian graphs, trees & their properties, spanning trees, colouring of graphs, independence number and chromatic number of simple graphs, connectivity, cut-set, directed graphs, shortest paths & maximal flows in a network.	
Content	1. Introduction to graphs	11 hours
	Graphs, degree sequence, distance in graphs, digraphs and multidigraphs, Cut-vertices bridges and blocks.	
	2. Trees and connectivity	7 hours
	Elementary properties of trees, minimal spanning trees, Prims algorithm, Kruskal's algorithm, connectivity and edge- connectivity, connectedness of digraphs.	7 hours
	 Eulerian and Hamiltonian graphs Eulerian graphs and digraphs, Hamiltonian graphs and digraphs, Fleury's algorithm and Hierholzer's algorithm. 	7 Hours
	 Planar graphs Euler's formula, characterizations of planar graphs, crossing number and thickness. 	7 hours
	 Graph colorings Vertex colorings, edge colorings, map colourings. 	5 hours
	6. Matchings and domination in graphs Matchings and independence in graphs, domination number of a graph, independence domination number of a graph.	4 hours
	7. Networks Relevance of maximum flow, Ford Fulkerson algorithm, Dijkstra's algorithm to find the shortest route.	7 hours
Pedagogy	Lectures/ Tutorials/Assignments/Self-study	
References/Re adings:	 G. Agnarsson and R. Greenlaw, Graph Theory: Modeling, Applications and algorithms, Pearson, 2011. 	

		11&15-5	5-2018
	2. Gary Chartrand and Ping Zhang, Introduction to Grap	h Theory,	
	Tata Mc-Graw-Hill Edition, 2006.		
	3. F. Harary, Graph Theory, Narosa Publishing House, 3	2001.	
	4. Gary Chartrand and O.R. Oellermann, Applied Algorit	thmic Graph	
	Theory, McGraw-Hill Inc. 1993.		
	5. L.R. Foulds, Graph Theory Applications, Springer Verl	ag, New	
	York, 2009.		
Learning	Learner should be able to tell relevance of graphs in differer	nt context,	
Outcomes:			
	ranging from puzzles & games to social science/engineering	/computer	
	science. Problem solving & learning algorithms is also an ess	ential part	
	of graph theory.		

Programme: M.Sc. Mathematics Course Code: MAT-108 Number of Credits: 04 Effective from: June, 2018.

Title of the Course: Actuarial Science

IX AC-9

Prerequisites		
Objectives		
	related concepts.	
Contents	1. Basic concepts of actuarial science and insurance. Accumulated Value, Present Value. Principals of compound interest: Normal and effective rates of interest and discount, force of interest and discount. Compound interest, accumulation factor. Annuities certain. Deferred annuities, annuities due. Redemption of Loans. Sinking Funds and Capital redemption assurance.	16 hours
	 2. Life insurance: Insurance payable at the moment's of death and at the end of the year of death-level benefit insurance, endowment insurance, differed insurance and varying benefit insurances, recursions, commutation functions. Life annuities : Single payment, continuous life annuities, discrete life annuities, life annuities with monthly payments, commutation functions, varying annuities, recursions, complete annuities-immediate and apportion able annuities -due. 	18 hours
	3. The Mortality tables. Functions and laws of mortality tables. Select ultimate and aggregate mortality tables. Functions other than yearly policy Values. Surrender values and paid up Values. Bonus Special policies. Joint life and last survivor statuses.	14 hours

<u>IX AC- 9</u> 11&15-5-2018

Pedagogy	Lectures/ tutorials/assignments/self-study	
References	1. N./L Bower, H.U.Gerber, J.C. Hickman, D.A. Jones and C.J. Nesbitt	
	(1986), Actuarial Mathematics society of Actuaries, Itasca, Illinois,	
	USA Second Edition (1997)	
	2. Spurgeon E.T. (1972), Life Contingencies, Cambridge University	
	Press.	
	3. Neill, A. (1977). Life Contingencies, Heinemann.	
	4. M.A. Mackenzie, N.E. Sheppard, An Introduction to the Theory Of	
	Life Contingencies, 1931.	
	5. P. Zima & R.L. Brown, Mathematics of Finance, Schaum's Outline	
	series.	
	6. Elements of actuarial science Premiums, Mortality and valuation	
	Federation of insurance institutes P.M. road, Mumbai.	
Learning	Students will be able to understand various insurance schemes and will be	
Outcomes	prepared to take up career in Insurance industry.	

Programme: M.Sc. Mathematics

Course Code: MAT-201Title of the Course: SEVERAL VARIABLE CALCULUSNumber of Credits: 04

Effective from: June, 2018.

	. Julie, 2018.		
Prerequisites	Knowledge of basic Real Analysis and Linear Algebra. Knowledge of		
	Integration of real valued functions on a subset of R is desirable		
Objectives	This course develops the ability to understand concepts of fu	inctions of	
	severable variables.		
Contents	1. Derivative of Function of more than one Variable: Partial	16	
	Derivative. Total derivative of function of more than one	hours	
	Variable. Jacobian. Sufficient Condition for differentiability.		
	Mean Value Theorem. Higher order derivatives. Condition for		
	Equality of Mixed Partial Derivatives. Taylor's Theorem.		
	Critical Points. Maximum, Minimum. Second Derivative		
	condition for Maximum/minimum. Conditional Optimum and		
	Lagrange Multipliers.		
	2. Inverse Function Theorem: Regular and Singular Points. Open	8 hours	
	Mapping Theorem. Inverse Function Theorem. Implicit Function		
	Theorem.		
	3.Riemann Integration: Rectangles in IR ⁿ and Riemann sums	24	
	over Rectangles. Upper and Lower Riemann Sums. Riemann	hours	
	Integral of a bounded Function. Algebra		
	of Riemann Integrals. Sets of Jordan Measure Zero. Oscillation of		
	a Function at a point, Integrability versus points of discontinuity		
	of a Function. Fubini's Theorem. Mean value theorem for		
	multiple integrals. Partitions of unity (Statement only). Change		
	of variable formula.		
Pedagogy Lectures/ tutorials/assignments/self-study			

References	Main Texts:
	1. Tom M Apostol, Mathematical Analysis, Addison Wesley Publishing
	Company, 1996.
	2. M. Spivak, Calculus on Manifolds, Benjamin Cummings, London.
	<u>Reference texts :</u>
	3. Walter Rudin, Principles of Mathematical Analysis, International
	Student Edition.
	4. James Munkres, Analysis on Manifolds, Addison Wesley Publishing
	Company,1991.
	5. T. M. Apostol, Calculus Vol.II. John Wiley and sons.
	6. B.V.Limaye & S.Ghorpade, A course in multivariable calculus, Springer
Learning	Learn to understand the concepts of functions of several variables. Compute
Outcomes	maximum/minimum of functions of several variables and to evaluate multiple
	integrals.

Programme: M. Sc. (Mathematics) Course Code: MAT-202

Title of the Course: ALGEBRA

Number of Credits: 4

Effective from AY: 2018-19

Prerequisite	Basic Group Theory	
S		
Objective	This course develops concepts in advanced Group Theory, Basics of Ring Theory and their applications., This course will also be a prerequisite for courses such as Field Theory and Galois Theory and Commutative Algebra.	
Content	 1. Sylow Theorems Conjugacy Classes. The Class Equation. The probability that two elements commute. The Sylow Theorems. Applications of Sylow Theorems. 2. Finite Simple Groups 	12 Hours
	Non simplicity Tests. The simplicity of A_5 3. Rings and Fields	4 Hours
	Rings. Fields. Integral Domains-definitions and Examples. Characteristic of Rings. Ideals and Factor Rings. Prime ideals and Maximal ideals. Ring Homomorphisms. Field of Quotients of an Integral Domain.	12 Hours
	4. Polynomial Rings and Factorization of Polynomials Polynomial Rings-Notations and Terminologies, The Division algorithm and Consequences, Reducibility Tests, Irreducibility Tests, Unique factorization in $\mathbb{Z}[x]$.	8 Hours
	5. Divisibility in Integral Domains Irreducibles. Primes. Unique Factorization Domains. Principal Ideal Domains. Euclidean Domains. Gaussian Integers and Fermat's $p = a^2 + b^2$ Theorem.	12 Hours
Pedagogy	Lectures/ Tutorials/Assignments/Self-study	

		11&15-5-2018
References/ Readings	 Contemporary Abstract Algebra, Joseph A. Gallian, Narosa Publishing House, 1999. A First Course in Absract Algebra, John B. Fraleigh, Pearson (India), 2014. Topics in Algebra, I.N.Herstein, Wiley India Edition, 2006. Abstract Algebra, David S.Dummit and Richard M. Foote, Second Edition, John Wiley & Sons, 1999. 	
Learning Outcomes	 On completion of this course ,the student will be able to Explain Concepts in Algebra regarding Groups, R and related structures, and develop the ability to work with various algebraic structures. Lay foundation for research topics in Algebra, Number Theory, Algebraic Geometry etc. 	Rings

Programme: M. Sc. (Mathematics) Course Code: MAT-203 Number of Credits: 4 Effective from AY: 2018-19

Title of the Course: FUNCTION ALANALYSIS

IX AC-9

Elicetive Holli Al		
Prerequisites	A first course in Real Analysis, Linear Algebra and Metric	
	Toplogy. Basic understanding of Lebesgue Integral Theory is	
	desirable.	
Objective	Starting with the basics this course will cover the foundations	
	of Functional Analysis such as normed spaces, inner product	
	spaces, Banach spaces, Hilbert spaces, bounded linear	
	operators and bounded functional, and the four fundamental	
	theorems-Han-Banach Theorem. Uniform Boundedness	
	Principle, Open Mapping Theorem and Closed Graph Theorem.	
Content	1.Normed Spaces, Banach Spaces	16 Hours
	Normed spaces- Properties and Banach spaces, Standard	
	normed spaces –Sequence spaces , Function spaces and	
	subspaces, Finite dimensional normed spaces and subspaces,	
	Equivalence of norms, Compactness and finite dimension,	
	Linear Operators-Boundedness and Continuity. Linear	
	functional. Normed spaces of Operators, Dual space-Algebraic	
	and Topological duals.	
	2.Inner Product Spaces, Hilbert Spaces	
	Inner Product Spaces- Properties and Hilbert spaces,	16 Hours
	Orthogonal Complement and Direct Sums, Orthonormal Sets	
	and Sequences, Total Orthonormal Sets and Sequences,	
	Representation of Functional on Hilbert Spaces, Hilbert -	
	Adjoint Operator, Self Adjoint, Unitary and Normal Operators.	
	3.Fundamental Theorems for Normed and Banach Spaces	
	[2159]	

	1	<u>IX AC- 9</u> 1&15-5-2018
	Hahn-Banach Theorem (Statements and idea of proof for the case of vector spaces, statement and proof for normed spaces), Applications to Existence of Functionals, Adjoint Operators, Reflexivity of Spaces, Baire Category Theorem (Statement only), Uniform Boundedness Theorem, Open Mapping Theorem, Closed Graph Theorem.	16 Hours
Pedagogy	Lectures/Tutorials/Assignments/Self-study	
References/ Readings	 Introductory Functional Analysis with Applications, Ervin Kreyszig, John Wiley & Sons, 1978. Functional Analysis, Balmohan V. Limaye, III edition. Functional Analysis: A First Course, M. Thamban Nair, PHI Learning, 2001. Basic Operator Theory, Israyel Gohberg and Seymour Goldberg, Birkhäuser, 1981. Linear Real analysis for Scientists and Engineers, B.V.Limaye, Springer. 	
Learning Outcomes	 On completion of the course the student will have Understanding of the basic concepts and fundamental theorems of Functional Analysis Appreciation of Functional Analysis as an important field for application oriented Mathematics. Ability to relate and apply the concepts learnt in the course to problems. Foundation for higher courses in Functional analysis, Operator Theory, PDE etc. 	

Programme: M.Sc. Mathematics

Course Code: MAT-204 Title of the Course: PARTIAL DIFFERENTIAL EQUATIONS Number of Credits: 04

Effective from: June, 2018.

Prerequisites	Knowledge of Real Analysis, Calculus of Several Variables, Ordinary		
	differential equations, Methods of Applied Mathematics.		
Objectives	This course develops the ability to solve partial differential equati	ons of first	
	and second order by standard methods.		
Contents	1.Simultaneous differential equations of the first and first	4 hours	
	degree in three variables: Methods of solutions of <i>dx/P</i> =		
	dy/Q = dz/R. Pfaffian differential forms and equations.		
	Solution		
	of Pfaffian differential equations in three variables.		
	2. First order PDE's: Origin and classifications. Solution of	12	
	Linear and Nonlinear First order PDE's. Methods of	hours	
	characteristics. Charpit's Methods. Jacobi's method.		
	3. Second Order Linear Partial Differential Equations: Origin.	6 hours	
	Linear equations with constant coefficients in two independence		
	Variables. Linear equations with variable coefficients.		

	<u>IX AC- 9</u>	
11	&15-5-2018	

		11&15-5-20	
	Classification. Reduction to Canonical Form. (only for the case of two independent variables).		
		8 hours	
	4. Methods of solving PDE :	8 nours	
	Method of Separation of variables. Use of Integral transforms		
	(Laplace and Fourier).		
	5. Wave Equation. One dimensional Wave equation.D'	18	
	Alembert' solution, Wave equation-Infinite string case.	hours	
	Laplace Equation : Harmonic function . Basic properties of		
	harmonic functions. Laplace equation. Translational and		
	rotational invariance of Laplace equation. Boundary value		
	problems. Uniqueness of solutions of Dirichlet and Neumann		
	problems. Mean value theorem for harmonic functions.		
	Maximum and minimum principle for harmonic functions.		
	Uniqueness and stability for Dirichlet problem.		
	Heat equation- Infinite rod case. Non homogeneous equation		
Pedagogy	Lectures/ tutorials/assignments/self-study		
References	Main Texts:		
	1. I. Sneddon, Elements of Partial Differential Equations, McGrow	/ Hill.	
	2. T.Amarnath, An elementary course in Partial Differential Equations, Narosa		
	Publishing company, 1997.		
	Reference texts :		
	3.K.Sankara Rao, Introduction to Partial Differential Equations, Prentice Hall of India, 1995.		
	4. F.John, Partial Differential equations, Springer Verlag Ltd.		
	5. C.R. Chester, Techniques of Partial Differential Equations.		
	6. R.Dennemeyer, Introduction to Partial Differential Equations of	and	
	Boundary Value Problems, McGraw Hill.		
	7. T.M. Hu, L. Debnath, Linear Partial differential equations for s	cientists and	
Engineers, Birkhauser.			
	Eligineers, birkhauser.		
Learning	Learns to solve partial differential equations of first and second o	rder. Learns	
Learning Outcomes			

Programme: M.Sc. Mathematics

Course Code: MAT-205Title of the Course: COMPLEX ANALYSISNumber of Credits: 04Effective from: June, 2018.

Prerequisites	Algebra of complex numbers including polar representation, Basics in Real		
	Analysis including convergence series, Topology of the Complex/Real plane,		
	Basic Complex Analysis including Cauchy,s theorem.		
Objectives	This course will prepare a student to take up research in Complex Function		
	Theory, Several Complex Variable Complex Analysis etc.		
Contents	1. Complex Differentiability: Analytic Functions and Power 12		
	series, Radius of convergence, Continuity and differentiability hours		
	of power series, Existence of power series expansion,		
	Exponential and Trigonometric function.		

	-	
		<u>IX AC- 9</u> 11&15-5-2018
	2. Contour Integration: Recall Cauchy's theorem; Cauchy's	
	integral formulae, Analyticity of Complex differentiable	hours
	functions, Liouville's theorem, Fundamental theorem of	nears
	Algebra, Mean value property and Maximum modulus principle.	
	3. Zeros and Poles: Zeros and Poles of holomorphic	8 hours
	functions, Singularities, Laurent series, Residues, winding number, The Argument principle.	
	4. Evaluation of Definite Real integrals: Trigonometric	10
	integrals, Improper integrals, Bypassing a pole, Inverse	hours
	Laplace transform, Branch cut and Key hole integrals.	
	5. Schwarz's lemma: Schwarz's lemma.	4 hours
	6. Conformal maps.	4 hours
Pedagogy	Class room lectures and tutorials, assignments and library refer	rence.
References	1. Anant R Shastri, Basic Complex Analysis of one variable, I	MacMillan,
	2011.II edition	
	2. J B Conwey, Complex Analysis, Springer Verlag.	
	3. Churchill and Brown, Complex Analysis,	
	4. E.B.Saff, A.D.Snider ; Fundamentals of Complex Analysis.	
Learning	Students will be prepared to take up advanced complex analysi	
Outcomes	analysis of more than one variable and will be equipped to take	e research in
	Complex Analysis and related subjects.	

Programme: M.Sc. Mathematics

Course Code: Number of Cru Effective from	edits: 04	
	sites Should have undergone a course in Real Analysis that includes Riemann Integration in one variable. Should be familiar with set theory very well.	

Prerequisites	Should have undergone a course in Real Analysis that includes Riemann		
	Integration in one variable. Should be familiar with set theory very well.		
Objectives	To prepare students to handle Functional Analysis, Fourier series and their		
	convergence, Laplace and Fourier transforms Wavelets analysis an	d	
	Continuous probability theory.		
Contents	1.Reimann-Stieltjes Integral: Weights and measures, The	8 hours	
	Riemann-Steiltjes integral, Space of integrable functions,		
	Integrators of bounded variation, The Riemann integral.		
	Shortcomings of Riemann integration.		
	2.Lebesgue Measure: Lebesgue outer measure, Riemann	10	
	integrability, Measurable sets, The structure of measurable	hours	
	sets, A non-measurable sets.		
	3.Measurable Functions: Measurable functions, Extended	8 hours	
	real valued functions, Sequence of measurable functions,		
	Approximation of measurable functions.		
	4.The Lebesgue Integral: Simple functions, Non-negative	12	
	functions, The general case, Lebesgue Dominated	hours	
	convergence theorem, Approximation of integrable		
	functions.		

<u>IX AC- 9</u> 11&15-5-2018

	5.Applications : The L ^p spaces, Approximation of L ^p -functions, 10		
	Fourier series. Convergence in mean of the Fourier Series. hours		
Pedagogy	Class room lectures and tutorials, assignments and library reference.		
References	1. N L Carothers, Real Analysis, Cambridge University Press, 2006.		
	2.H L Royden, Real Analysis, PHI, 1995.		
	3. Charalambos D Aliprantis, Owen Burkinshaw, Principles of Real Analysis,		
	Academic Press/Elsevier, 2004.		
	4.Paul Halmos, Measure Theory.		
Learning	The course will prepare the students to take courses in functional analysis,		
Outcomes	Partial Differential equations etc. This enables the students to study Abstract		
	measure theory and Probability theory.		

Programme: M. Sc. (Mathematics)

Title of the Course: Number Theory

Course Code: MAT-207 Number of Credits: 4 Effective from AY: 2018-19

Effective from AY: 201	0-19		
Prerequisites for the	Some	basic Complex Analysis. Elementary number	
<u>course:</u>	theory	. Congruences.	
Objective:	This co	ourse will serve as Prerequisites to an advanced	
	Course	e in Analytical Number Theory.	
Content:	1.	Fundamental Theorem of Arithmetic. Divisibility.	10 hours
		Fibonacci numbers.	
	2.	Arithmetical functions and Dirichlet	
		multiplication. Mobius function μ. Euler totient	
		function $oldsymbol{\phi}$. Relation connecting μ and $oldsymbol{\phi}$. Product	
		formula for $\boldsymbol{\phi}$ (n). Dirichlet product of arithmetical	10 hours
		functions. Dirichlet inverse and Mobius inversion	
		formula. Mangoldt function. Multiplicative	
		functions. Liouville function. Divisor functions.	
		Generalized convolutions. Formal power series.	
		Derivative of arithmetical functions.	10 hours
	3.	Averages of arithmetical functions. Big oh	
		notation. Euler summation formula. Some	
		elementary asymptotic formulas. Average order of	
		d(n). Average order of σ_{lpha} (n). Average order of $oldsymbol{\phi}$	
		(n). Average order of $\mu(n)$ and $\Lambda(n)$.	6 hours
	4.	Some elementary theorems on distribution of	
		prime numbers.	4 hours
	5.	Characters of finite abelian groups.	
	6.	Partition Theory. Partitions of numbers.	6 hours
		Generating function of p(n). Other generating	
		functions. Theorems of Euler. Theorem of Jacobi.	
		Special cases of Jacobi's identity.	2 hours
	7.	Basic Cryptology.	
Pedagogy:	lecture	es/ tutorials/assignments/self-study.	
			•

		<u>IX AC- 9</u>
		11&15-5-2018
References/Readings	1. T. M Apostol, Introduction to Analuytic Number	
	Theory, Narosa Publishing House.	
	2. Thomas Koshy, Elementary Number Theroy with	
	Applications, Second Edition, Elsevier India	
	Pvt. Ltd., 2005 . (Chapter 9)	
	3. G.H. Hardy and E.M. Wright, Introduction to theory of	
	numbers. (Chapter XIX)	
	4. Heng Huat Chan, Analytic Number Theory for	
	Undergraduates, (Monographs in Number	
	Theory), World Scientific, 2009 .	
	5. I. Niven, H.S. Zuckerman and H.L. Montgomery, An	
	Introduction to the Theory of Numbers, 5th edition,	
	Wiley-India.	
	6. David Burton, Elementary Number Theory, Sixth	
	edition, Tata McGraw-Hill Edition.	
	7. A. Baker, A concise introduction to theory of numbers,	
	Cambridge University Press.	
	8. J. Stillwell, Elements of Number Theory, Springer.	
Learning Outcomes	1. This course prepares the student to learn advanced	
	number theory, Cryptography and Partition theory.	
	13. Taking this course students can read more	
	advanced Analytic Number Theory books.	

Programme: M. Sc. (Mathematics)

Course Code: MAT-208 Number of Credits: 4 Effective from AY: 2018-19 Title of the Course: Lie Algebra

Effective from AY: 201	0-19					
Prerequisites for the	Basic Linear Algebra, basic group theory, basic analysis.					
<u>course:</u>						
Objective:	This course develops concepts in Matrix Groups and Lie					
	algebras. It helps in understanding other concepts like					
	Manifold, Lie groups etc.					
Content:	1. Matrix Groups. Matrices. Real and Complex	12 hours				
	Matrix Groups. Orthogonal Groups. Topology of					
	Matrix Groups. Tangent space.					
	2. Lie algebras. Definition, Some Examples,					
	subalgebras and Ideals. Homomorphisms. Algebras.	10 hours				
	Derivations. Structure Constants. Ideals and					
	Homomorphisms. Constructions with Ideals. Quotient					
	Algebras. Correspondence between Ideals. Low-					
	Dimensional Lie Algebras.					
	2. Solvable Lie Algebras. Nilpotent Lie Algebras.					
	Subalgebras of gl(V). Nilpotent Maps. Weights. The	8 hours				
	Invariance Lemma. An Application of the Invariance					
	Lemma.					
	3. Some Representation Theory. Modules for Lie					
	Algebras. Submodules and Factor Modules.	8 hours				

		11&15-5-2018			
	 Irreducible and Indecomposable Modules. Homomorphisms. Schur's Lemma. Representation of sl(2, C). The Modules V_d. Classifying the Irreducible sl(2, C)-Modules. Brief introduction to: Cartan's Criteria. Testing for Solvability. The Killing Form. Testing for Semisimplicity. Derivations of Semisimple Lie Algebras. The Root Space Decomposition. Cartan Subalgebras. Definition of the Root Space. Decomposition. Cartan Subalgebras. Root Systems. Bases for Root Systems. Cartan Matrices and Dynkin Diagrams. 	or 10 hours			
Pedagogy:	lectures/ tutorials/assignments/self-study.				
References/Readings	 Kristopher Tapp, Matrix Groups for Undergraduates, American Mathematical Society, 2005. Karin Erdmann and Mark J. Wildon, Introductio to Lie Algebras, Springer Undergraduate Mathematics Series, Springer-Verlag. 2006. J.E. Humphreys, Introduction to Lie algebras an representation theory, Graduate Text in Mathematics, Springer-Verlag. N. Jacobson, Lie Algebras, Dover Publications. JP. Serre, Complex Semisimple Lie Algebras, Springer. 	d			
Learning Outcomes	 Taking this course students get acquainted with I algebras and Matrix groups theory. Taking this course student can read Lie groups theory. 	Lie			

<u>IX AC-9</u>

Programme: M. Sc. (Mathematics)						
Course Code: MAT-209	Title of the Course: Special Funct	tions				
Number of Credits: 4						
Effective from AY: 201	8-19					
Prerequisites for the	Some basic Complex Analysis and Differential Equations.					
<u>course:</u>						
Objective:	This course develops concepts in Gamma, Beta functions					
	and also studies Legendre polynomials and Bessels					
	functions.					
Content:	1. Infinite products:- Introduction, definition of an	6 hours				
	infinite product, a necessary condition for					
	convergence, the associated series of logarithms,					
	absolute convergence, uniform convergence.					
	2. The Gamma and Beta functions:- The Euler and					
	Mascheroni constant, the Gamma function, a					

		IX AC-9
		11&15-5-2018
	 series for Γ'(z)/ Γ(z), evaluation of Γ(1) and Γ'(1), the Euler product for Γ(z), the difference equation Γ(z + 1) = zΓ(z), evaluation of certain infinite products, Euler's integral for Γ(z), the Beta function, the value of Γ(z) Γ(1 - z), the factorial function, Legendre's duplication formulae, Gauss' multiplication theorem, a summation formula due to Euler. The hypergeometric function:- The function F(a,b; c; z), a simple integral form, F(a,b,c,1) as a function of the parameters, evaluation of F(a,b,c,1), the contiguous function relations, the hypergeometric differential equation, F(a,b,c,z) as a function of its parameters, elementary series manipulations, simple transformations. Series solution of differential equations. Method 	10 hours 8 hours
	 5. Legendre Polynomials and Functions. Legendre equation and its solution. Generating function. Legendre series. Associated legendre functions. 	8 hours
	 Properties of associated Legendre functions. 6. Bessel function, Bessel's equatin and its solutions. Generating function. Integral representation. Recurrence relations. Hankel functions. Equations reducible to Bessel's equation. Modified Bessels functions. Recurrence 	8 hours 8 hours
	relations for modified Bessels functions.	
Pedagogy:	lectures/ tutorials/assignments/self-study.	
<u>References/Readings</u>	 E.D. Rainville, Special functions, Chelsa Publishing Company, New York, 1960. W.W. Bell, Special Functions for scientists and engineers, Dover Publications, New York, 2004. G.E. Andrews, R. Askey, R. Roy, Special .Functions, Encyclopedia of Mathematics and its Applications 71, Cambridge University Press, Cambridge.1999. 	
Learning Outcomes	Taking this course students (i) get acquainted with Gamma, Beta functions. Also they study Legendre and Bessel Functions. (ii) can study some Engineering Mathematics.	

Programme: M.Sc. Mathematics Course Code: MAT-210 Number of Credits: 04 Effective from: June, 2018.

Title of the Course: DIFFERENCE EQUATIONS

		11013-3-20				
Prerequisites	Knowledge of basic Real Analysis, Linear Algebra and Differential ed	quations				
Objectives	This course helps in understanding basic concepts of discrete calculus. It					
	develops the ability to solve difference equations by standard methods.					
	help students to take up further studies in discrete dynamical systems and					
	numerical modeling.					
Contents	1. Calculus of finite differences: Review of basic concepts.	8 hours				
	2. Nonlinear Difference Equations. Equilibrium Points and	8 hours				
	their dynamics. Logistic equation.					
	3. Linear difference equations. Basic theory. Method of	12				
	Undetermined Coefficients and Variation of Parameters	hours				
	Formula. Higher Order equations. Behaviour of Solutions.					
	Nonlinear equations transformable to linear equations					
	4. Systems of linear Difference Equations. Basic Theory.	12				
	Linear Periodic systems. Stability theory of Linear	hours				
Systems.						
	5. Z-Transforms and its applications. Volterra Difference	8 hours				
	Equation of Convolution Type.					
Pedagogy	Lectures/ tutorials/assignments/self-study					
References	Main Texts:					
	1. S.N. Elaydi, An Introduction to Difference Equations, Springe	er Verlag.				
		_				
	<u>Reference texts :</u>					
	2. S.Goldberg , Introduction to Difference equations, Wiley Publication.					
	3. V.Lakshmikantham and D.Trigiante, Theory of difference equ					
Academic Press.						
	4. K.Miller, Linear Difference equations, W.A.Benjam.					
Learning	1. Learn to solve difference equations.					
Outcomes	2. Analyses the properties of solution.					
	3. Learns about discrete models and their stability					

Programme: M.Sc. Mathematics

C οι	Course Code: MAT-301 Title of the Course: ADVANCED ALGEBI				GEBRA				
Nu	Number of Credits: 04								
Effe	ective from	: June,	2018.						
				<i>.</i> .					

Prerequisites	Knowledge of basic s in linear algebra and linear maps, group theory, ring	
	theory including the polynomial rings over fields.	
Objectives	This course will prepare a student to take up research in Field Theory,	
	Number theory, Cryptography, etc.	
Contents	1.Extension of Fields : Field extensions, Field of rational 12	
	functions, Finite extension and Product rule of degrees, hours	
	Simple extension, Algebraic extension, Transcendental	
	extension, Construction by straight edge and compass,	
	Constructible numbers.	

		11&15-5-2018
	2.Splitting Field: Roots of polynomial, Splitting field,	10
	Existence and uniqueness of splitting field, Isomorphism	hours
	extension theorem, Algebraic closure, Existence and	
	uniqueness of Algebraic closure, Finite fields, Existence an	d
	uniqueness of finite fields, Derivative and multiple roots,	
	Simple extension, primitive roots of unity, Cyclotomic extensions.	
	3.Automorphism group : Automorphisms of fields, Galois groups, Galois groups of finite fields, Galois group of Cyclotomic extensions. Galois group of a polynomial.	8 hours
	4.Galois Theory: Symmetric rational functions, Galois grou	ip 10
	of field of rational function in <i>n</i> variable, Normal Extensior Fundamental Theorem of Galois theory.	, hours
	5.Solvability : Solvable groups, Insolvability of A_5 , Solvabilit of polynomials, Insolvability of quintics, Examples of insolvable quintics over \mathbb{Q} .	y 8 hours
Pedagogy	Class room lectures and tutorials, assignments and library refer	ence.
References	1.I N Herstein, Topics in Algebra, Wiley Students Edition, 20	06.
	2. David S. Dummit and Richard M. Foote, Abstract Algebra,	, II Edition,
	John Wiley Sons Inc., 1999.	
	3.Thomas Gallian, Abstract Algebra,	
Learning	Students will be prepared to take up research in Algebra in gen	eral and Filed
Outcomes	theory, Algebraic number theory and Cryptology in particular.	

IX AC-9

Title of the Course: COMBINATORICS

Programme: M. Sc. (Mathematics) Course Code: MAT-302 Number of Credits: 4 Effective from AY: 2018-19

Prerequisites Basics of - Set Theory, Algebra, Linear Algebra Objective Starting from the basic principles of counting, this course aims to give an introductory exposition to different aspects of Combinatorics. The course will emphasise on the importance of enumeration tools and techniques in diverse branches of Mathematics and Applied fields. Content **1.Basic Counting Principles and Techniques** 12 Hours Review of basic Counting Principles-Addition Principle, Multiplication Principle, Method of two-way Counting, Method of Bijections, Permutations and Combinations, Circular Permutations, Counting Objects with Repetitions, Binomial and Multinomial Theorems (Combinatorial Proofs), Binomial and Multinomial Coefficients and Identities. 2. The Fundamental Counting Problem 2 Hours Statement of the Problem-The Sxteen Cases, Partition Numbers P(n,k) and P(n), Stirling Numbers S(n,k) and s(n,k), Bell numbers

			IX AC-9
[11	&15-5-2018
	B(n). 3.Recurrence Relations and Explicit Formulas The Inclusion-Exclusion Principle, Derangements and D(n),		12 Hours
	 Recurrence Relations and Explicit Formulas for P(n,k),P(n), S(r s(n,k), B(n), and D(n). Idea of Generating Functions , Method of solving Linear Recurrence Relations Using Generating Functions, Generating Functions f P(n,k), P(n), S(n,k), s(n,k), B(n) and D(n). 4.Pigeonhole Principle (PHP) The Pigeonhoe Principle - its different formulations and exam Applications of PHP to some standard Problems in Geometry, Number Theory , Graph Theory and Colouring of Plane. 5.Sequnces and Partial Orders 	or ples,	6 Hours
	Applications of PHP to Sequences and Partial Orders- The Erd Szekeres Theorem, Dilworth's Lemma, Dilworth's Theorem, Sperner's Theorem.	ös-	6 Hours
	6.Ramsey Theory Ramsey's Theorem –First version (for 2 colours), Second vers (for r colours), and Infinitary version, Ramsey Numbers and bounds, Computations of small Ramsey Numbers, Schur's Theorem, van der Waerden's Theorem (Statement and Discus		10 Hours
Pedagogy	Lectures/ Tutorials/Assignments/Self-study		
References/ Readings	 Introduction to Combinatorics, Martin J. Erickson, John Wiley,1996. Cominatorial Techniques, Sharad S. Sane, Hindustan Book Agency, 2013. Introducion to Combinatorics, W.D. Wallis and J.C. George, A Walk Through Combinatorics, M. Bona, World Scientific Publishing Company, 2002. Combinatorics, V.K. Balakrishnan, Schaum Series, McGraw- 		
Learning Outcomes	 Students ,on completion of this course, Will be able to appreciate the importance of combinate techniques in diverse branches of Mathematics and Appreciates. This course will teach the students how to understand deal with enumerative problems and to apply combinate techniques to solve a range of application problems in Optimization, Graph Theory and Networking. 	oplied and atorial	

Programme: M.Sc. Mathematics				
Course Code: MAT-303		Title of the Course: DIFFERENTIAL GEOMETRY		
Number of Cr	Number of Credits: 04			
Effective from: June, 2018.				
Prerequisites	Should have undergone basic courses in Real Analysis, Calculus of Several			

<u>IX AC- 9</u> 11&15-5-2018

		11013-3-20
	Variables, Linear Algebra and Vector calculus. Knowledge of metric	c space
	theory, topology and Partial differential equations are desirable.	
Objectives	To prepare students to take up a research career in modern	
	Geometry/Topology.	
Contents	1.Curves: Regular curves in space, arc-length,	6 hours
	parameterization, arc-length parameterization.	
	2.Curvature: Curvature and torsion of space curves, Serret-	8 hours
	Frenet formula, Signed curvature of plane curves, Periodic	
	curves, Simple closed curves, Isoperimetric inequality and	
	Four-vertex theorem.	
	3.Surfaces in 3-dimention : Regular surfaces in 3-dimension,	7 hours
	Tangents space, Normal and Orientation, Quadric surfaces.	
	4.First Fundamental Form: The First fundamental form of a	9 hours
	regular surface, Length of arcs on surfaces, Area of surfaces,	
	isometries and conformal mappings of surfaces.	
	5.Second Fundamental Form: Second fundamental for of a	10
	surface, normal curvature of a surface and principal	hours
	curvatures of a surface.	
	6.Gaussian Curvature: Mean and Gaussian curvatures of a	8 hours
	surface, Surfaces of constant curvatures, pseudo sphere,	
	Gauss map.	
Pedagogy	Class room lectures and tutorials, assignments and library reference	ce.
References	1. Andrew Pressley, Differential Geometry, Springer Verlag,	
Learning	Prepare the students to take up research in mathematics, in partic	ular, in
Outcomes	Geometry and Topology.	

Programme: M.Sc. Mathematics

Course Code: MAT-304Title of the Course: Mathematical ModelingNumber of Credits: 04Effective from: June, 2018.

Knowledge of basic Real Analysis, Advanced Calculus, Ordinary and Partial Prerequisites Differential equations, Difference equation. Objectives This course develops the understanding of purpose and importance of mathematical modeling. Contents 1. Introduction, Classification, Techniques and Examples of 16 hours mathematical modeling. Modeling process with proportionality and geometric similarity. 2. Mathematical Modeling through ordinary differential 16 hours equations of first order and of second order. First order systems of ordinary differential equations. 3. Modeling with discrete dynamical systems. 16 hours 4. Modeling through Partial differential equations. 16 hours Pedagogy Lectures/ tutorials/assignments/self-study References Main Texts:

	1. J.N.Kapur, A Mathematical Modelling, Wiley Eastern ltd.
	2. F.R.Giordano, M.D.Weir, W.P.Fox, A first course in Mathematical
	modeling, Thomson Publications.
	 <u>Reference texts :</u> 3. D.N.Burghes, Modelling with Differential Equations, Ellis Horwood and John Wiley. 4. J. Sandefur, Elementary Mathematical Modeling, Thomson Publications.
	5. F.Chorlten, Differential and difference equations., Von Nostqand.
Learning	Students will learn to build up models using differential and difference
Outcomes	equations and to analyse the behaviour of the given system analytically and numerically.

Programme: M.Sc. Mathematics Course Code: MAT-305 Number of Credits: 04 Effective from: June, 2018.

Lifective from				
Prerequisites	Knowledge of Real Analysis, Linear Algebra, Differential equations, Several variable calculus.			
Objectives	This course helps in understanding basic concepts of Integral Equat	ions It		
Objectives				
	develops the ability to solve integral equations by standard method	ls.		
Contents	1. Basic concepts of Integral equations. Classification. Integral	16		
	Equations with Separable Kernels. Method of Successive	hours		
	Approximations. Resolvent Kernel and its Properties.			
	Decomposition methods.			
	2. Applications to Ordinary Differential Equations, Initial Value	10		
	Problems and Boundary Value Problems, Green's functions.	hours		
	3. Classical Fredholm Theory. Symmetric Kernels, Hilbert-	12		
	Schmidt Theory.			
	4. Singular Integral Equations, Abel and Cauchy Type and Hilbert 10			
		_		
	Kernel. Integral Transform Methods (Laplace, Fourier and hours			
	Hilbert).			
Pedagogy	Lectures/ tutorials/assignments/self-study			
References	Main Texts:			
	1. Ram P Kanwal, Linear Integral Equations, Theory and applications.			
	Springer.			
	Reference texts :			
2. Courant and Hilbertt, Methods of Mathematical Physics, Vol. I				
	3. S.G.Mikhilin, Integral Equations.			

	 I.G.Petrovsky, Lectures on the theory of Integral equations. K.Yoshida, Lectures on Differential and Integral Equations
Learning Outcomes	Students will learn to solve Integral equations by different methods.

Programme: M.Sc. MathematicsCourse Code: MAT-306Title of the Course: STURM LIOUVILLE PROBLEMSNumber of Credits: 04

Effective	from:	June,	2018.

Ducucautation	Knowledge of Bool Anglusia Coloubus of Coursel Mariables, Course	lass an also	
Prerequisites			
	Ordinary differential equations, Methods of Applied Mathematics		
Objectives	This course develops the ability to solve Sturm Liouville problems. These		
	problems are encountered in mathematical Physics.		
Contents	1.Review of ordinary differential equations. Principle of	16	
	Superposition, Boundary Conditions. Adjoint Equation.	hours	
	Green"s Formulae. Vibrating String.		
	2.Sturm Liouville problems. Singular Boundary Points.	14	
	Asymptotic Behaviour.	hours	
	3. Eigen value problems with continuous spectra.	10	
		hours	
	4.Suspended Rope and Associated Integral equation.	8hours	
Pedagogy	Lectures/ tutorials/assignments/self-study		
References	Main Texts:		
	1. M.P.S. Estham, Theory of differential equations, Van Nostrand, 1970.		
	,,,,,,		
	Reference texts :		
	1.R.Courant , D.Hilbert. Methods of Mathematical Physics, Vol. I	Wilay	
	Eastern, New Delhi, 1975.		
	2 Coddington E. and Levinson, Theory of ordinary differential e	quations,	
	TMH.		
Learning	Learns to form and solve SLP		
Outcomes			

Programme: M.Sc. Mathematics

Course Code: MAT-307	Title of the Course: MATHEMATICS FOR FINANCE

Number of Credits: 04

Effective from: June, 2018.

Prerequisites	Knowledge of basic Real Analysis, Differential equations, Elementa Probability theory.	ary
Objectives	This course helps in understanding basic concepts of Financial mathematics and in understanding financial models.	
Contents	1.Introduction. A simple market model. Rates of interests. 12 Present value. No Arbitrage Principle. Risk and Returns. Risk hours hours free assets. 12 2. Time value of money and money market. Risk assets. 12 Dynamics of stock prices. Tree and other models. hours Binomial tree model. Discrete time market model. 10 3. Portfolio Management. Securities. 10 4. Contracts. Options. Types and bounds. 14	
	 Contracts. Options. Types and bounds. Forward options. Call and put options. Variable interest rates. 	hours
Pedagogy	Lectures/ tutorials/assignments/self-study.	
References	 <u>Main Texts:</u> Marek Capinski and T.Zastawnik , Mathematics For Finance, Springer Verlag, 2003. (Chap. 1-7; 10) <u>Reference texts :</u> Damiano Brigo, Fabio Mercurio Interest rates models Theory and Practice, Springer. Alexander Melinkov Risk Analysis in Finance and Insurance, Chapman \& Hall. An elementary introduction to Mathematical Finance, Sheldon Ross 	
Learning Outcomes	 Learns the basics of Financial computations Understands the working of financial market. . 	

Programme: M.Sc. Mathematics Course Code: MAT-401 Number of Credits: 04

Title of the Course: ADVANCED LINEAR ALGEBRA

Effective from: June, 2018.

Prerequisites	Linear spaces, dimension, Linear maps, eigenvalue problem, Algebraically closed fields, Fundamental theorem of Algebra, Multivariable Calculus,
	Reimann Integration of multivariable functions.
Objectives	To prepare students to handle solving problems involving linear equations
	and take up research in such areas.

	F	IV AC 0	
		<u>IX AC- 9</u> 11&15-5-201	18
• • •			10
Contents	1.Elementary Decomposition: Characteristic values,	14	
	Annihilating polynomials, Invariant subspaces, Simultaneou	is hours	
	triangulation and diagonalization, Invariant Decomposition	s,	
	Primary Decomposition.		
	2.Rational and Jordan forms: Cyclic subspaces and	16	
	Annihilators, Cyclic decomposition and Rational forms,	hours	
	Jordan forms, Computation of Invariant factors.		
	3.Multi-linear Algebra: Multi-linear functions and forms an	id 18	
	tensors, Alternating forms and alternating products,	hours	
	Determinant function, Permutations and uniqueness of		
	determinant, Properties of determinant, Differential Forms,		
	Integration on Chains, Poincare lemma and Stoke's theorer	n.	
Pedagogy	Class room lectures and tutorials, assignments and library refere	ence.	
References	4.Kenneth Hoffman, Linear Algebra, PHI, 1997.		
	5. James Munkres, Calculus on Manifolds,		
	6. Spivak, Calculus on Manifolds,		
Learning	Students will be equipped to study Differential geometry, Differ	ential	
Outcomes	Topology, Representation theory of groups and also to take up r	research in	
	various areas of mathematics and Statistics.		

Programme: M. Sc. (Mathematics) Course Code: MAT-402 Number of Credits: 4

Course Title: COMMUTATIVE ALGEBRA

Effective from AY: 2018-19			
Prerequisites	A first course in Algebra with Groups , Rings and Fields		
Objective	To introduce students to Commutative algebra and develop concepts in higher algebra with adequate examples and counter examples.		
Content	 1.Modules Definition, Direct Sums, Free Modules and Vector Spaces, Quotient modules, Homomorphisms, Simple Modules, Modules over PID's. 2.Modules with Chain Conditions Artinian Modules and Rings, Noetherian Rings and Modules, Modules of Finite Length, Nil Radicals and Jacobson Radicals, Radical of an Artinian Ring. 3.Homological Algebra Chain Complexes, Exact Sequences, Five Lemma and Snake	16 Hours 20 Hours	
	Lemma, homology Group of a Chain Complex, Long Exact Sequence associated with Exact Sequences of Chain Complexes	12 Hours	
Pedagogy	Lectures/ Tutorials/Assignments/Self-study		
References/	1. Introduction to Rings and Modules, C. Musili, Narosa		
Readings	Publishing House, 1992.		
	2. Algebra, S. Lang, Addison Wesley, 1985.		

		11&15-5-2018
	3. Commutative Algebra, N. S. Gopalakrishnan, Universities	
	Press, 2015.	
	4. A First Course in Abstract algebra, J.B.Fraleigh, Pearson, 2002	2.
Learning	A student completing this course will have	
Outcomes	Basic knowledge and understanding of Module Theory	
	and Homological algebra	
	Ability to solve problems related to the content of the	
	course	
	Foundation to take up further studies in Commutative	
	Algebra and Algebraic Geometry	

(Back to Index)(Back to Agenda)

IX AC-9

D 3.40 Minutes of the meeting of Board of Studies in English held on 19/03/2018

Annexure I

GENERIC ELECTIVES (Semesters I, II, III, IV) For students of Arts, Science & Commerce

Students who have not taken English as a Discipline Specific Core (English Elective) may offer any of the following papers as a Generic Elective.

N.B. Students cannot repeat a paper under the Generic Elective Head if they have already offered the Paper at Semester I or II as a Generic Elective.

SEMESTER I

Code	Title	L/T/P	Credits
		(hours/week)	
EGG 101	Literature and Cinema	4-0-0	04